
May 5, 2003 ©2001-2003 Howard Huang 1

Buses

There are two main ingredients to I/O systems.
— Devices like hard drives and networks provide input and output.
— Buses connect devices to each other and the processor.

Today we’ll focus on buses and address several issues.
— What signals are sent and received over a bus? 
— How can multiple devices transmit data across a single bus?
— Who controls data transfers across the bus?



May 5, 2003 Buses 2

Basic bus protocols

A bus is a shared path that connects several devices together. Devices can 
communicate with one another over the bus.
It’s convenient to think of I/O operations as memory operations, in which 
case two devices might interact as follows.
1. An initiator sends an address and data over the bus to a target.
2. The target processes the request by “reading” or “writing” data.
3. The target sends a reply over the bus back to the initiator.

The bus width limits the number of bits transferred per cycle.

System bus

Hard disks CD-ROM Network DisplayCPU Memory

(1) (3)

(2)



May 5, 2003 Buses 3

What is the bus anyway?

A bus is just a bunch of wires which transmits three kinds of information.
— Control signals specify commands like “read” or “write.”
— The location on the device to read or write is the address.
— Finally, there is also the actual data being transferred.

Some buses include separate control, address and data lines, so all of this 
information can be sent in one clock cycle.

Control
Address
Data

Hard disks CD-ROM Network DisplayCPU Memory



May 5, 2003 Buses 4

Multiplexed bus lines

Unfortunately, this could lead to many wires, occupying a lot of physical 
space and electrically interfering with each other.
— Many buses transfer 32 to 64 bits of data at a time.
— Addresses are usually at least 32-bits long.

Another common approach is to multiplex some lines.
— For example, we can use the same lines to send both the address and 

the data, one after the other.
— The drawback is that now it takes two cycles to transmit both pieces 

of information. 

Control
Address
& Data

Hard disks CD-ROM Network DisplayCPU Memory



May 5, 2003 Buses 5

Arbitration

System bus

Hard disks CD-ROM Network DisplayCPU Memory

Only one device may transfer data at a time on the bus.
Arbitration is the process of deciding which device has priority for using 
the bus, when many devices all need to transmit data. There are three 
main schemes.
— Centralized arbitration
— Daisy-chained arbitration
— Distributed arbitration



May 5, 2003 Buses 6

Centralized arbitration

One idea is to have all devices ask a central arbiter for permission before 
using the bus. If several devices need the bus in the same cycle, then the 
arbiter determines who goes first.
— Each device has a request line and a granted line to the arbiter.
— Devices that need to use the bus will set their request lines.
— The arbiter will set one of the granted lines in response.

The PCI bus in most desktop computers uses central arbitration.

Bus request lines

Bus granted lines

Arbiter Hard disks CD-ROM Network



May 5, 2003 Buses 7

Daisy-chained arbitration

If devices have fixed priorities, a daisy-chained method can work well.
— A grant line goes from the arbiter to the highest-priority device, then 

the device with the next-highest priority, and so forth.
— In the picture below, if the hard disk needs the bus, it will intercept 

the granted signal. The CD-ROM only gets access to the bus if the disk 
doesn’t want it.

If we’re not careful, this arbitration method may not be fair. Low-priority 
devices may never get to access the bus.

Bus request lines

Bus granted lines

Arbiter Hard disks CD-ROM Network



May 5, 2003 Buses 8

Distributed arbitration

With distributed arbitration schemes, the devices themselves negotiate 
with each other to determine who gets the bus.
One example is Ethernet, which uses collision detection.
— Any device can start sending data at any time.
— Devices must be able to detect collisions when other nodes send data 

at the same time. If this happens, then the devices all stop and wait a 
random amount of time before retrying.

People do this in real life too, such as when many people start talking at 
once or when cars arrive at an intersection simultaneously.



May 5, 2003 Buses 9

I/O requests

Most I/O requests are made by applications or the operating system, and 
involve moving data between a peripheral device and main memory.
There are two main ways that programs communicate with devices.
— Memory-mapped I/O
— Isolated I/O

There are also several ways of managing data transfers between devices 
and main memory.
— Programmed I/O
— Interrupt-driven I/O
— Direct memory access



May 5, 2003 Buses 10

Communicating with devices

We already mentioned that devices 
can be considered as memories, with 
an “address” for reading or writing.
Many instruction sets often make this 
analogy explicit. To transfer data to 
or from a particular device, the CPU
can access special addresses.
Here you can see a video card can be 
accessed via addresses 3B0-3BB, 3C0-
3DF and A0000-BFFFF.
There are two ways these addresses 
can be accessed.



May 5, 2003 Buses 11

Memory-mapped I/O

With memory-mapped I/O, one address space is divided 
into two parts.
— Some addresses refer to physical memory locations.
— Other addresses actually reference peripherals.

For example, my old Apple IIe had a 16-bit address bus 
which could access a whole 64KB of memory.
— Addresses C000-CFFF in hexadecimal were not part of 

memory, but were used to access I/O devices.
— All the other addresses did reference main memory.

The I/O addresses are shared by many peripherals. In the 
Apple IIe, for instance, C010 is attached to the keyboard 
while C030 goes to the speaker.
Some devices may need several I/O addresses.

Memory

I/O

Memory

C000

D000

FFFF

0000



May 5, 2003 Buses 12

Programming memory-mapped I/O

Control
Address
Data

Hard disks CD-ROM Network DisplayCPU Memory

To send data to a device, the CPU writes to the appropriate I/O address. 
The address and data are then transmitted along the bus.
Each device has to monitor the address bus to see if it is the target.
— The Apple IIe main memory ignores any transactions whose address 

begins with bits 1100 (addresses C000-CFFF). 
— The speaker only responds when C030 appears on the address bus.



May 5, 2003 Buses 13

Isolated I/O

Another approach is to support separate address 
spaces for memory and I/O devices, with special 
instructions that access the I/O space.
For instance, 8086 machines have a 32-bit address 
space.
— Regular instructions like MOV reference RAM.
— The special instructions IN and OUT access a 

separate 64KB I/O address space.
— Address 0000FFFF could refer to either main 

memory or an I/O device, depending on what 
instruction was used.

FFFFFFFF

Main
memory

00000000

0000FFFF
I/O

devices
00000000



May 5, 2003 Buses 14

Comparing memory-mapped and isolated I/O

Memory-mapped I/O with a single address space is nice because the same 
instructions that access memory can also access I/O devices.
— For example, issuing MIPS sw instructions to the proper addresses can 

store data to an external device.
— However, part of the address space is taken by I/O devices, reducing 

the amount of main memory that’s accessible.
With isolated I/O, special instructions are used to access devices.
— This is less flexible for programming.
— On the other hand, I/O and memory addresses are kept separate, so 

the amount of accessible memory isn’t affected by I/O devices.



May 5, 2003 Buses 15

Transferring data with programmed I/O

CPU sends read
request to device

CPU waits
for device

CPU reads word
from device

CPU writes word
to main memory

Done?

Ready

Not ready

No

Yes

The second important question is how data is 
transferred between a device and memory.
Under programmed I/O, it’s all up to a user 
program or the operating system.
— The CPU makes a request and then waits for 

the device to become ready (e.g., to move 
the disk head).

— Buses are only 32-64 bits wide, so the last 
few steps are repeated for large transfers.

A lot of CPU time is needed for this!
— If the device is slow the CPU might have to 

wait a long time—as we already saw, most 
devices are slow compared to modern CPUs.

— The CPU is also involved as a middleman for 
the actual data transfer.

(This CPU flowchart is based on one from Computer 
Organization and Architecture by William Stallings.)



May 5, 2003 Buses 16

Can you hear me now? Can you hear me now?

CPU sends read
request to device

CPU waits
for device

Ready

Not ready

Continually checking to see if a device is ready 
is called polling.
It’s not a particularly efficient use of the CPU.
— The CPU repeatedly asks the device if it’s 

ready or not.
— The processor has to ask often enough to 

ensure that it doesn’t miss anything, which 
means it can’t do much else while waiting.

An analogy is waiting for your car to be fixed.
— You could call the mechanic every minute, 

but that takes up all your time.
— A better idea is to wait for the mechanic to 

call you.



May 5, 2003 Buses 17

Interrupt-driven I/O

CPU sends read
request to device

CPU reads word
from device

CPU writes word
to main memory

Done?

CPU receives interrupt

No

Yes

CPU does other stuff

. . .

Interrupt-driven I/O attacks the problem of the 
processor having to wait for a slow device.
Instead of waiting, the CPU continues with other 
calculations. The device interrupts the processor 
when the data is ready.
The data transfer steps are still the same as with 
programmed I/O, and still occupy the CPU.
Device interrupts are similar to exceptions. 
— They are typically handled by the operating 

system, which performs the data transfer.
— See Lecture 19 for a little more information 

about exceptions.

(Flowchart based on Stallings again.)



May 5, 2003 Buses 18

Multiple interrupts

If the CPU continues running while waiting for a device, it’s possible that 
another process will make another I/O request.
There could be several outstanding I/O requests at any time, which also 
means that several devices could interrupt the CPU at the same time.
In this case, the processor must determine two things.
— Which devices sent interrupts. 
— Which device has priority and should be handled first.

There are several possible solutions.
— Use multiple interrupt signals.
— Perform software polling.
— Enable hardware daisy-chaining.



May 5, 2003 Buses 19

Multiple interrupt signals

With multiple interrupt signals, the CPU can easily tell which devices sent 
interrupts.
— Each device might have its own interrupt signal line.
— Devices could also send an identification code along a single shared 

interrupt line; the hard disk might be device 1110, for example.
The processor then determines which devices have priority, and handles 
those first.

Separate interrupt request lines

CPU Hard disks CD-ROM Network

Shared interrupt request line 4

CPU Hard disks CD-ROM Network



May 5, 2003 Buses 20

Software polling

If there is only one interrupt request line, software polling can be used. 
— The operating system asks each device if it sent an interrupt.
— The order in which devices are queried reflects the priorities.

This is an inefficient use of CPU time, especially with many devices.

Shared interrupt request line

Interrupt query lines

Hard disks CD-ROM NetworkCPU



May 5, 2003 Buses 21

Daisy-chaining

This is the same basic idea as before, but we use it here to prioritize CPU 
interrupts instead of bus requests.
— Each device can send an interrupt signal to the processor.
— Only one of them will be “acknowledged” by the CPU. Priorities are 

determined by position in the daisy chain.

Other methods are also possible, such as having an arbiter decide which 
device gets to interrupt the CPU first.

Interrupt request line

Interrupt acknowledged lines

CPU Hard disks CD-ROM Network



May 5, 2003 Buses 22

Direct memory access

One final method of data transfer is to introduce a 
direct memory access, or DMA, controller.
The DMA controller is a simple processor which does 
most of the functions that the CPU would otherwise 
have to handle.
— The CPU asks the DMA controller to transfer 

data between a device and main memory. After 
that, the CPU can continue with other tasks.

— The DMA controller issues requests to the right 
I/O device, waits, and manages the transfers 
between the device and main memory.

— Once finished, the DMA controller interrupts the 
CPU.

This is yet another form of parallel processing.

(Flowchart again.)

CPU sends read
request to DMA

unit

CPU receives DMA
interrupt

CPU does other stuff

. . .



May 5, 2003 Buses 23

Main memory problems

System bus

DMA unit Hard disks NetworkCPU &
cache

Memory CD-ROM

As you might guess, there are some complications with DMA.
— Since both the processor and the DMA controller may need to access 

main memory, there could be a lot of bus contention.
— If the DMA unit writes to a memory location that is also contained in 

the cache, the cache and memory could become inconsistent.
Having the main processor handle all data transfers is less efficient, but 
easier from a design standpoint!



May 5, 2003 Buses 24

Summary

Buses connect multiple devices together.
Only one device may transmit data on the bus at any time, so arbitration
schemes are needed to decide which devices have priority.
Processors communicate with I/O devices in two main ways.
— Memory-mapped I/O uses standard data transfer instructions.
— Isolated I/O requires special instructions in the ISA.

Actual data transfers can be done by the CPU using either programmed or 
interrupt-driven I/O, or they can be offloaded to a DMA controller.
Next time we’ll see examples of PC buses and get ready for the final!


	Buses
	Basic bus protocols
	What is the bus anyway?
	Multiplexed bus lines
	Arbitration
	Centralized arbitration
	Daisy-chained arbitration
	Distributed arbitration
	I/O requests
	Communicating with devices
	Memory-mapped I/O
	Programming memory-mapped I/O
	Isolated I/O
	Comparing memory-mapped and isolated I/O
	Transferring data with programmed I/O
	Can you hear me now? Can you hear me now?
	Interrupt-driven I/O
	Multiple interrupts
	Multiple interrupt signals
	Software polling
	Daisy-chaining
	Direct memory access
	Main memory problems
	Summary

		hhuang@cs.uiuc.edu
	2003-08-22T02:30:36-0500
	Urbana, Illinois
	Howard Huang
	I am the author of this document




