
April 23, 2003 ©2001-2003 Howard Huang 1

Cache performance

Caches take advantage of locality to speed up most data accesses.
— Increasing the block size can take advantage of spatial locality.
— Increasing cache associativity helps reduce the miss rate.

Today we’ll finish up with associativity and do two more things.
— We’ll try to quantify the benefits of different cache designs, and see

how caches affect overall performance.
— We’ll also investigate some main memory organizations that can help

increase memory system performance.
Next Monday we’ll introduce some of the issues involved with writing to
caches, and talk about cache configurations in modern processors.

April 23, 2003 Cache performance 2

Hits and misses

To examine the performance of a memory system, we
need to focus on a couple of important factors.
— How long does it take to send data from the cache

to the CPU?
— How long does it take to copy data from memory

into the cache?
— How often do we have to access main memory?

There are names for all of these variables.
— The hit time is how long it takes data to be sent

from the cache to the processor. This is usually
fast, on the order of 1-3 clock cycles.

— The miss penalty is the time to copy data from
main memory to the cache. This often requires
dozens of clock cycles.

— The miss rate is the percentage of misses.

Lots of
dynamic RAM

A little static
RAM (cache)

CPU

April 23, 2003 Cache performance 3

Average memory access time

The average memory access time, or AMAT, can then be computed.

AMAT = Hit time + (Miss rate × Miss penalty)

This is just averaging the amount of time for cache hits and the amount
of time for cache misses.
How can we improve the average memory access time of a system?
— Obviously, a lower AMAT is better.
— Miss penalties are always much greater than hit times, so the best way

to lower AMAT is to reduce the miss penalty or the miss rate.
However, AMAT should only be used a general guideline. Remember that
execution time is still the best performance metric.

April 23, 2003 Cache performance 4

Memory and overall performance

How do cache hits and misses affect overall system performance?
— Assuming a hit time of one CPU clock cycle, program execution will

continue normally on a cache hit. (Our earlier computations always
assumed one clock cycle for an instruction fetch or data access.)

— For cache misses, we’ll assume the CPU must stall to wait for a load
from main memory.

The total number of stall cycles depends on the number of cache misses
and the miss penalty.

Memory stall cycles = Memory accesses × miss rate × miss penalty

To include stalls due to cache misses in CPU performance equations, we
have to add them to the “base” number of execution cycles.

CPU time = (CPU execution cycles + Memory stall cycles) × Cycle time

April 23, 2003 Cache performance 5

Performance example

Assume that 33% of the instructions in a program are data accesses. The
cache hit ratio is 97% and the hit time is one cycle, but the miss penalty
is 20 cycles.
If the cache was perfect and never missed, the AMAT would be one cycle.
But even with just a 3% miss rate, the AMAT here increases 1.6 times!

AMAT = Hit time + (Miss rate × Miss penalty)
= 1 cycle + (3% × 20 cycles)
= 1.6 cycles

What about the overall performance? If I instructions are executed, then
the number of wasted cycles will be 0.2 × I.

Memory stall cycles = Memory accesses × Miss rate × Miss penalty
= 0.33 I × 0.03 × 20 cycles
= 0.2 I cycles

This code is 1.2 times slower than a program with a “perfect” CPI of 1!

April 23, 2003 Cache performance 6

Memory systems are a bottleneck

CPU time = (CPU execution cycles + Memory stall cycles) × Cycle time

Processor performance traditionally outpaces memory performance, so
the memory system is often the system bottleneck.
For example, with a base CPI of 1, the CPU time from the last page is:

CPU time = (I + 0.2 I) × Cycle time

What if we could double the CPU performance so the CPI becomes 0.5,
but memory performance remained the same?

CPU time = (0.5 I + 0.2 I) × Cycle time

The overall CPU time improves by just 1.2/0.7 = 1.7 times!
Refer back to Amdahl’s Law from Homework 2, and textbook page 101.

April 23, 2003 Cache performance 7

Improving memory (and overall) performance

Memory stall cycles = Memory accesses × Miss rate × Miss penalty

You can decrease the number of stall cycles by reducing any or all of the
individual factors.
— Telling programmers to load and store less doesn’t usually work!
— It’s probably easier to to reduce the miss rate or the miss penalty.

There are many methods for reducing the miss rate.
— Using an associative cache can help reduce conflicts.
— Making the cache bigger lets us store more stuff in it.
— Adjusting the block size can take advantage of spatial locality.

Later today we’ll see some ways to reduce the miss penalty as well.

April 23, 2003 Cache performance 8

Comparing cache organizations

Like many architectural features, caches are evaluated experimentally.
— As always, performance depends on the actual instruction mix, since

different programs will have different memory access patterns.
— Simulating or executing real applications is the most accurate way to

measure performance characteristics.
The graphs on the next few slides illustrate the simulated miss rates for
several different cache designs.
— Again lower miss rates are generally better, but remember that the

miss rate is just one component of average memory access time and
execution time.

— You’ll probably do some cache simulations if you take CS333.

April 23, 2003 Cache performance 9

Associativity tradeoffs and miss rates

As we saw last time, higher associativity means more complex hardware.
But a highly-associative cache will also exhibit a lower miss rate.
— Each set has more blocks, so there’s less chance of a conflict between

two addresses which both belong in the same set.
— Overall, this will reduce AMAT and memory stall cycles.

Figure 7.29 on p. 604 of the textbook shows the miss rates decreasing as
the associativity increases.

0%

3%

6%

9%

12%

Eight-wayFour-wayTwo-wayOne-way

M
is

s
ra

te

Associativity

April 23, 2003 Cache performance 10

Cache size and miss rates

The cache size also has a significant impact on performance.
— The larger a cache is, the less chance there will be of a conflict.
— Again this means the miss rate decreases, so the AMAT and number of

memory stall cycles also decrease.
The complete Figure 7.29 depicts the miss rate as a function of both the
cache size and its associativity.

0%

3%

6%

9%

12%

15%

Eight-wayFour-wayTwo-wayOne-way

1 KB
2 KB
4 KB
8 KB

M
is

s
ra

te

Associativity

April 23, 2003 Cache performance 11

Block size and miss rates

Finally, Figure 7.12 on p. 559 shows miss rates relative to the block size
and overall cache size.
— Smaller blocks do not take maximum advantage of spatial locality.
— But if blocks are too large, there will be fewer blocks available, and

more potential misses due to conflicts.

1 KB

8 KB

16 KB

64 KB

256

40%

35%

30%

25%

20%

15%

10%

5%

0%

M
is

s
ra

te

64164

Block size (bytes)

April 23, 2003 Cache performance 12

Basic main memory design

There are some ways the main memory can be organized to reduce miss
penalties and help with caching.
For some concrete examples, let’s assume the following
three steps are taken when a cache needs to load data
from the main memory.

1. It takes 1 cycle to send an address to the RAM.
2. There is a 15-cycle latency for each RAM access.
3. It takes 1 cycle to return data from the RAM.

In the setup shown here, the buses from the CPU to the
cache and from the cache to RAM are all one byte wide.
If the cache has one-byte blocks, then filling a block
from RAM (i.e., the miss penalty) would take 17 cycles.

1 + 15 + 1 = 17 clock cycles

The cache controller has to send the desired address to
the RAM, wait and receive the data.

Main
Memory

Cache

CPU

April 23, 2003 Cache performance 13

Miss penalties for larger cache blocks

If the cache has four-byte blocks, then loading a single block would need
four individual main memory accesses, and a miss penalty of 68 cycles!

4 × (1 + 15 + 1) = 68 clock cycles

Main
Memory

CPU

Cache

April 23, 2003 Cache performance 14

A wider memory

A simple way to decrease the miss
penalty is to widen the memory and
its interface to the cache, so we can
read multiple bytes from RAM in one
shot.
If we could read four bytes from the
memory at once, a four-byte cache
load would need just 17 cycles.

1 + 15 + 1 = 17 cycles

The disadvantage is the cost of the
wider buses—each additional bit of
memory width requires another
connection to the cache.

Main
Memory

Cache

CPU

April 23, 2003 Cache performance 15

An interleaved memory

Another approach is to interleave
the memory, or split it into “banks”
that can be accessed individually.
The main benefit is overlapping the
latencies of accessing each word.
For example, if our main memory
has four banks, each one byte wide,
then we could load four bytes into
a cache block in just 20 cycles.

1 + 15 + (4 × 1) = 20 cycles

Our buses are still one byte wide
here, so four cycles are needed to
transfer data to the caches.
This is cheaper than implementing
a four-byte bus, but not too much
slower.

Main Memory

CPU

Bank 0 Bank 1 Bank 2 Bank 3

Cache

April 23, 2003 Cache performance 16

Interleaved memory accesses

Load word 1
Load word 2
Load word 3
Load word 4

Clock cycles
15 cycles

Here is a diagram to show how the memory accesses can be interleaved.
— The magenta cycles represent sending an address to a memory bank.
— Each memory bank has a 15-cycle latency, and it takes another cycle

(shown in blue) to return data from the memory.
This is the same basic idea as pipelining!
— As soon as we request data from one memory bank, we can go ahead

and request data from another bank as well.
— Each individual load takes 17 clock cycles, but four overlapped loads

require just 20 cycles.

April 23, 2003 Cache performance 17

Summary

Memory system performance depends upon the cache hit time, miss rate
and miss penalty, as well as the actual program being executed.
— We can use these numbers to find the average memory access time.
— We can also revise our CPU time formula to include stall cycles.

AMAT = Hit time + (Miss rate × Miss penalty)

Memory stall cycles = Memory accesses × miss rate × miss penalty

CPU time = (CPU execution cycles + Memory stall cycles) × Cycle time

The organization of a memory system affects its performance.
— The cache size, block size, and associativity affect the miss rate.
— We can organize the main memory to help reduce miss penalties. For

example, interleaved memory supports pipelined data accesses.

	Cache performance
	Hits and misses
	Average memory access time
	Memory and overall performance
	Performance example
	Memory systems are a bottleneck
	Improving memory (and overall) performance
	Comparing cache organizations
	Associativity tradeoffs and miss rates
	Cache size and miss rates
	Block size and miss rates
	Basic main memory design
	Miss penalties for larger cache blocks
	A wider memory
	An interleaved memory
	Interleaved memory accesses
	Summary

		hhuang@cs.uiuc.edu
	2003-08-22T02:30:53-0500
	Urbana, Illinois
	Howard Huang
	I am the author of this document

