
January 27, 2003 ©2001-2003 Howard Huang 1

Basic MIPS Architecture

Today we’ll introduce the MIPS processor, which will be our example
system for much of this semester.
— We present the basic instruction set architecture.
— This also involves some discussion of the CPU hardware.

This architecture is mostly a superset of the one from CS231, so today’s
lecture should also serve as a quick review.

January 27, 2003 Basic MIPS Architecture 2

Programming and CPUs

Programs written in a high-level
language like C++ must be compiled
using tools like CC or gcc.
The result is an executable program
file, containing CPU-specific machine
language instructions.
— These instructions represent

functions that can be handled by
the processor.

— When you run the program, the
instructions are loaded into
memory and executed by the
processor.

Thus, a processor’s instruction set is
the boundary between software and
hardware.

High-level program

Compiler

SoftwareExecutable file

Control Unit Hardware

Control words

Datapath

January 27, 2003 Basic MIPS Architecture 3

Instruction sets

An instruction set architecture closely reflects the processor’s design, so
different CPUs have different instruction sets.
Older processors used complex instruction sets, or CISC architectures.
— Many powerful instructions were supported, making the assembly

language programmer’s job much easier.
— But this meant that the processor was more complex, which made the

hardware designer’s life a bloody nightmare.
Many new processors use reduced instruction sets, or RISC architectures.
— Only relatively simple instructions are available. But with high-level

languages and compilers, the impact on programmers is minimal.
— On the other hand, the hardware is much easier to design, optimize,

and teach in classes.
Even most current CISC processors, such as Intel 8086-based chips, are
now implemented using a lot of RISC techniques.

January 27, 2003 Basic MIPS Architecture 4

MIPS

MIPS was one of the first RISC architectures. It was started about 20 years
ago by John Hennessy, one of the authors of our textbook.
The architecture is similar to that of other recent CPU designs, including
Sun’s SPARC, IBM and Motorola’s PowerPC, and ARM-based processors.
MIPS designs are still used in many places today.
— Silicon Graphics workstations and servers
— Various routers from Cisco
— Game machines like the Nintendo 64 and Sony Playstation 2.

http://www-flash.stanford.edu/~jlh/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/processors/index.html
http://www.sun.com/processors/index.html
http://www.ibm.com/
http://www.ibm.com/
http://www.motorola.com/
http://www.motorola.com/
http://www.apple.com/powermac/processor.html
http://www.apple.com/powermac/processor.html
http://www.arm.com/
http://www.arm.com/
http://www.sgi.com/
http://www.cisco.com/
http://www.nintendo.com/systems/n64/n64_overview.jsp
http://www.us.playstation.com/

January 27, 2003 Basic MIPS Architecture 5

MIPS: three address, register-to-register

MIPS uses three-address instructions for data manipulation.
— Each ALU instruction contains a destination and two sources.
— For example, an addition instruction (a = b + c) has the form:

MIPS is a register-to-register, or load/store, architecture.
— The destination and sources must all be registers.
— Special instructions, which we’ll see later today, are needed to access

main memory.

add a, b, c

operation

destination sources

operands

January 27, 2003 Basic MIPS Architecture 6

Register file review

Here is a block symbol for a general 2k × n register file.
— If Write = 1, then D data is stored into D address.
— You can read from two registers at once, by supplying the A address

and B address inputs. The outputs appear as A data and B data.
Registers are clocked, sequential devices.
— We can read from the register file at any time.
— Data is written only on the positive edge of the clock.

D data
Write

D address

A address B address

A data B data

2k × n Register File

kk

k

n

nn

January 27, 2003 Basic MIPS Architecture 7

MIPS register file

MIPS processors have 32 registers, each of which holds a 32-bit value.
— Register addresses are 5 bits long.
— The data inputs and outputs are 32-bits wide.

More registers might seem better, but there is a limit to the goodness.
— It’s more expensive, because of both the registers themselves as well

as the decoders and muxes needed to select individual registers.
— Instruction lengths may be affected, as we’ll see on Wednesday.

D data
Write

D address

A address B address

A data B data

32 × 32 Register File

55

5

32

32 32

January 27, 2003 Basic MIPS Architecture 8

MIPS register names

MIPS register names begin with a $. There are two naming conventions:
— By number:

$0 $1 $2 … $31

— By (mostly) two-letter names, such as:

$a0-$a3 $s0-$s7 $t0-$t9 $sp $ra

Not all of these are general purpose registers.
— Some have specific uses that we’ll see later.
— You have to be careful in picking registers for your programs.

January 27, 2003 Basic MIPS Architecture 9

Basic arithmetic and logic operations

The basic integer arithmetic operations include the following:

add sub mul div

And here are a few logical operations:

and or xor

Remember that these all require three register operands; for example:

add $t0, $t1, $t2 # $t0 = $t1 + $t2

mul $s1, $s1, $a0 # $s1 = $s1 × $a0

January 27, 2003 Basic MIPS Architecture 10

Larger expressions

More complex arithmetic expressions may require multiple operations at
the instruction set level.

t0 = (t1 + t2) × (t3 − t4)

add $t0, $t1, $t2 # $t0 contains $t1 + $t2
sub $s0, $t3, $t4 # Temporary value $s0 = $t3 - $t4
mul $t0, $t0, $s0 # $t0 contains the final product

Temporary registers may be necessary, since each MIPS instructions can
access only two source registers and one destination.
— In this example we could re-use $t3 instead of introducing $s0.
— But be careful not to modify registers that are needed again later.

January 27, 2003 Basic MIPS Architecture 11

We need more space!

Registers are fast and convenient, but we have only 32 of them, and each
one is just 32-bits wide.
— That’s not enough to hold data structures like large arrays.
— We also can’t access data elements that are wider than 32 bits.

We need to add some main memory to the system!
— RAM is cheaper and denser than registers, so we can add lots of it.
— But memory is also significantly slower, so registers should be used

whenever possible.
In the past, using registers wisely was the programmer’s job.
— For example, C has a keyword “register” that marks commonly-used

variables which should be kept in the register file if possible.
— However, modern compilers do a pretty good job of using registers

intelligently and minimizing RAM accesses.

January 27, 2003 Basic MIPS Architecture 12

Memory review

Memory sizes are specified much like register files; here is a 2k x n RAM.

A chip select input CS enables or “disables” the RAM.
ADRS specifies the memory location to access.
WR selects between reading from or writing to the memory.
— To read from memory, WR should be set to 0. OUT will be the n-bit

value stored at ADRS.
— To write to memory, we set WR = 1. DATA is the n-bit value to store

in memory.

2k × n memory

ADRS OUT
DATA
CS
WR

nk
n

Write selected address11
Read selected address01
Nonex0

OperationWRCS

January 27, 2003 Basic MIPS Architecture 13

MIPS memory

232 × 8 memory

ADRS OUT
DATA
CS
WR

832
8

MIPS memory is byte-addressable, which means that each memory address
references an 8-bit quantity.
The MIPS architecture can support up to 32 address lines.
— This results in a 232 x 8 RAM, which would be 4 GB of memory.
— Not all actual MIPS machines will have this much!

January 27, 2003 Basic MIPS Architecture 14

Loading and storing bytes

The MIPS instruction set includes dedicated load and store instructions for
accessing memory, much like the CS231 example processor.
The main difference is that MIPS uses indexed addressing.
— The address operand specifies a signed constant and a register.
— These values are added to generate the effective address.

The MIPS “load byte” instruction lb transfers one byte of data from main
memory to a register.

lb $t0, 20($a0) # $t0 = Memory[$a0 + 20]

The “store byte” instruction sb transfers the lowest byte of data from a
register into main memory.

sb $t0, 20($a0) # Memory[$a0 + 20] = $t0

January 27, 2003 Basic MIPS Architecture 15

Indexed addressing and arrays

lb $t0, const($a0)

Indexed addressing is good for accessing contiguous locations of memory,
like arrays or structures.
— The constant is the base address of the array or structure.
— The register indicates the element to access.

For example, if $a0 contains 0, then

lb $t0, 2000($a0)

reads the first byte of an array starting at address 2000.
If $a0 contains 8, then the same instruction would access the ninth byte
of the array, at address 2008.
This is why array indices in C and Java start at 0 and not 1.

January 27, 2003 Basic MIPS Architecture 16

Arrays and indexed addressing

lb $t0, const($a0)

You can also reverse the roles of the constant and register. This can be
useful if you know exactly which array or structure elements you need.
— The register could contain the address of the data structure.
— The constant would then be the index of the desired element.

For example, if $a0 contains 2000, then

lb $t0, 0($a0)

accesses the first byte of an array starting at address 2000.
Changing the constant to 8 would reference the ninth byte of the array,
at address 2008.

lb $t0, 8($a0)

January 27, 2003 Basic MIPS Architecture 17

Loading and storing words

You can also load or store 32-bit quantities—a complete word instead of
just a byte—with the lw and sw instructions.

lw $t0, 20($a0) # $t0 = Memory[$a0 + 20]

sw $t0, 20($a0) # Memory[$a0 + 20] = $t0

Most programming languages support several 32-bit data types.
— Integers
— Single-precision floating-point numbers
— Memory addresses, or pointers

Unless otherwise stated, we’ll assume words are the basic unit of data.

January 27, 2003 Basic MIPS Architecture 18

Memory alignment

Keep in mind that memory is byte-addressable, so a 32-bit word actually
occupies four contiguous locations of main memory.

The MIPS architecture requires words to be aligned in memory; 32-bit
words must start at an address that is divisible by 4.
— 0, 4, 8 and 12 are valid word addresses.
— 1, 2, 3, 5, 6, 7, 9, 10 and 11 are not valid word addresses.
— Unaligned memory accesses result in a bus error, which you may have

unfortunately seen before.
This restriction has relatively little effect on high-level languages and
compilers, but it makes things easier and faster for the processor.

0 1 2 3 4 5 6 7 8 9 10 11

Word 1 Word 2 Word 3

Address

8-bit data

January 27, 2003 Basic MIPS Architecture 19

The array example revisited

Remember to be careful with memory addresses when accessing words.
For instance, assume an array of words begins at address 2000.
— The first array element is at address 2000.
— The second word is at address 2004, not 2001.

Revisiting the earlier example, if $a0 contains 2000, then

lw $t0, 0($a0)

accesses the first word of the array, but

lw $t0, 8($a0)

would access the third word of the array, at address 2008.

January 27, 2003 Basic MIPS Architecture 20

Computing with memory

So, to compute with memory-based data, you must:
1. Load the data from memory to the register file.
2. Do the computation, leaving the result in a register.
3. Store that value back to memory if needed.

For example, let’s say that an integer array A starts at address 4096. How
can we do the following using MIPS assembly language?

A[2] = A[1] × A[1]

The solution below assumes that register $t0 contains 4096. (Next week
we’ll talk about how to get 4096 into $t0 in the first place.)

lw $s0, 4($t0) # $s0 = A[1]
mul $s0, $s0, $s0 # $s0 = A[1] × A[1]
sw $s0, 8($t0) # A[2] = A[1] × A[1]

January 27, 2003 Basic MIPS Architecture 21

Summary

Instruction sets serve as the link between programs and processors.
— High-level programs must be translated into machine code.
— Each machine instruction is then executed by the processor.

We introduced the MIPS architecture.
— The MIPS processor has thirty-two 32-bit registers.
— Three-address, register-to-register instructions are used.
— Loads and stores use indexed addressing to access RAM.
— Memory is byte-addressable, and words must be aligned.

Next time we’ll discuss control flow and some new instructions that will
let us write more interesting programs.

	Basic MIPS Architecture
	Programming and CPUs
	Instruction sets
	MIPS
	MIPS: three address, register-to-register
	Register file review
	MIPS register file
	MIPS register names
	Basic arithmetic and logic operations
	Larger expressions
	We need more space!
	Memory review
	MIPS memory
	Loading and storing bytes
	Indexed addressing and arrays
	Arrays and indexed addressing
	Loading and storing words
	Memory alignment
	The array example revisited
	Computing with memory
	Summary

		hhuang@cs.uiuc.edu
	2003-08-22T02:24:25-0500
	Urbana, Illinois
	Howard Huang
	I am the author of this document

