
August 5, 2003 ©2000-2003 Howard Huang 1

Memory and I/O

So far we’ve been talking mostly about processor design, but there’s a lot
more to computers than just the CPU.
— Memory and peripheral devices give us somewhere to store data.
— Buses connect processors, memory and peripherals together.

These affect overall system speed just as much as the processor. A 3 GHz
CPU can’t go very fast if it always has to wait for a 56 kbps modem!

August 5, 2003 Memory and I/O 2

Memory

Recall the memory tradeoff we mentioned several weeks ago.
— Static memory is very fast, but also very expensive.
— Dynamic memory is relatively slow, but much cheaper.

CPU

Lots of
dynamic RAM

CPU

Lots of
static RAM

Slow!Expensive!

August 5, 2003 Memory and I/O 3

Introducing caches

Lots of
dynamic RAM

A little static
RAM (cache)

CPU
Wouldn’t it be nice if we could find a balance between
fast and cheap memory?
We do this by introducing a cache, which is a small
amount of fast, expensive memory.
— The cache goes between the processor and the

slower, dynamic main memory.
— It keeps a copy of the most frequently used data

from the main memory.
Memory access speed increases overall, because we’ve
made the common case faster.
— Reads and writes to the most frequently used

addresses will be serviced by the cache.
— We only need to access the slower main memory

for less frequently used data.

August 5, 2003 Memory and I/O 4

The principle of locality

It’s usually difficult or impossible to figure out what data will be “most
frequently accessed” before a program actually runs, which makes it hard
to know what to store into the small, precious cache memory.
But in practice, most programs exhibit locality, which the cache can take
advantage of.
— The principle of temporal locality says that if a program accesses one

memory address, there is a good chance that it will access the same
address again.

— The principle of spatial locality says that if a program accesses one
memory address, there is a good chance that it will also access other
nearby addresses.

August 5, 2003 Memory and I/O 5

Temporal locality in programs

The principle of temporal locality says that if a program accesses one
memory address, there is a good chance that it will access the same
address again.
Loops are excellent examples of temporal locality in programs.
— The loop body, in blue, will be executed many times.
— The computer will need to access those same few locations of the

instruction memory over and over.

LD R1, #0 // R1 = 0
LD R2, #1 // R2 = 1

FOR BGT R2, #5, L // Stop when R2 > 5
ADD R1, R1, R2 // R1 = R1 + R2
ADD R2, R2, #1 // R2++
JMP FOR // Go back to the loop test

L ADD R3, R1, R1 // R3 = R1 + R1

August 5, 2003 Memory and I/O 6

Temporal locality in data

Programs often access the same variables over and over, especially within
loops. Below, sum and i are repeatedly read and written.

Commonly-accessed variables can sometimes be kept in registers, but this
is not always possible.
— There are a limited number of registers.
— There are situations where the data must be kept in memory, as is the

case with shared or dynamically-allocated memory.

sum = 0;
for (i = 0; i < MAX; i++)

sum = sum + f(i);

August 5, 2003 Memory and I/O 7

Spatial locality in programs

The principle of spatial locality says that if a program accesses one
memory address, there is a good chance that it will also access other
nearby addresses.

Nearly every program exhibits spatial locality, because instructions are
usually executed in sequence—if we execute an instruction at memory
location i, then we will probably also execute the next instruction, at
memory location i+1.
Code fragments such as loops exhibit both temporal and spatial locality.

LD R1, A
LD R2, B
ADD R3, R1, R2
LD R1, C
LD R2, D
ADD R1, R1, R2
MUL R1, R1, R3
ST X, R1

August 5, 2003 Memory and I/O 8

Spatial locality in data

Programs often access data
that is stored contiguously.
— Arrays, like a in the code

on the top, are stored in
memory contiguously.

— The individual fields of a
record or object like
employee are also kept
contiguously in memory.

Data accesses may also exhibit
both temporal and spatial
locality, as with the array a in
the first example here.

sum = 0;
for (i = 0; i < MAX; i++)

sum = sum + a[i];

employee.name = “Homer Simpson”;
employee.boss = “Mr. Burns”;
employee.age = 45;

August 5, 2003 Memory and I/O 9

How caches take advantage of temporal locality

Lots of
dynamic RAM

A little static
RAM (cache)

CPU
The first time the processor reads from an address in
main memory, a copy of that data is also stored in the
cache.
— The next time that same address is read, we can

use the copy of the data in the cache instead of
accessing the slower dynamic memory.

— So the first read is a little slower than before since
it goes through both main memory and the cache,
but subsequent reads are much faster.

This takes advantage of temporal locality—commonly
accessed data is stored in the faster cache memory.

August 5, 2003 Memory and I/O 10

How caches take advantage of spatial locality

Lots of
dynamic RAM

A little static
RAM (cache)

CPU
When the CPU reads location i from main memory, a
copy of that data is placed in the cache.
But instead of just copying the contents of location i,
we can copy several values into the cache at once,
such as the four bytes from locations i through i + 3.
— If the CPU later does need to read from locations

i + 1, i + 2 or i + 3, it can access that data from
the cache and not the slower main memory.

— For example, instead of reading just one array
element at a time, the cache might actually be
loading four array elements at once.

Again, the initial load incurs a performance penalty,
but we’re gambling on spatial locality and the chance
that the CPU will need the extra data.

August 5, 2003 Memory and I/O 11

The devil is in the details

Lots of
dynamic RAM

A little static
RAM (cache)

CPU
Actually implementing a cache is tricky.
— When we copy data from main memory, exactly

where should we put it within the cache?
— The cache is much smaller than main memory, so

what happens if the cache fills up?
— Now we could have two copies of the same data,

one in the cache and one in RAM. If we modify the
data, we have to modify it in both places!

It’s difficult to accurately predict the performance
benefits of caching, since all programs have different
memory access patterns.
Many cache comparisons are done using benchmarks.
To find out how the speed of two systems compares,
just run some programs and see how long they take.

August 5, 2003 Memory and I/O 12

Modern caches

Modern processors take the concept of caching one step
further, and include at least two levels of caches.
— The primary or Level 1 cache is smallest but fastest.
— The secondary or Level 2 cache is larger and stores

more data, but it’s slower.
— The main memory is the largest and slowest of all.

These caches are actually included on the same chip as
the CPU itself, to decrease the cache access delays.
New CPUs try to provide as much cache as possible, but
they are still only a fraction of the size of typical 256MB
to 512MB main memories.

CPU

L1

L2

Main
memory

256 KB64 KBMotorola PowerPC G4

128 KB

8+ KB

L1 cache

512 KBAMD Athlon XP

512 KBIntel Pentium 4

L2 cacheProcessor

August 5, 2003 Memory and I/O 13

Caches and dies

As manufacturing technology improves, designers
can squeeze more and more cache memory onto a
processor die.
In the old Pentium III days the L2 cache wasn’t even
on the same chip as the processor itself. Companies
sold processor “modules” that were composed of
several chips internally.
The second picture illustrates the size difference
between an older Pentium 4 and a newer one. The
newer one has an area of just 131 mm2—the size a
fingernail!
The last picture shows the dies of an older Athlon
with only 256KB of L2 cache, and a newer version
with 512KB of L2 cache. You can literally see the
doubling of the cache memory.

Tech Report

Tom’s Hardware

Hardware.fr

http://www.tomshardware.com/
http://www.tomshardware.com/
http://www.hardware.fr/
http://www.hardware.fr/
http://techreport.com
http://techreport.com/reviews/2000q2/piii-800/
http://www6.tomshardware.com/cpu/20020107/p42200-04.html
http://www.hardware.fr/articles/454/page1.html

August 5, 2003 Memory and I/O 14

CPU families

Manufacturers often sell a range of processors based on the same design.

In all cases, one of the main differences is the size of the caches.
— The mid-level Athlon XP and Pentium 4 have 512KB of L2 cache.
— Low-end processors have only half as much or less L2 cache memory.
— In contrast, the high-end chips feature up to 1 MB of cache.

This highlights the importance of caches and memory systems for overall
system performance.

Duron

Celeron

Budget

OpteronAthlon XPAMD

XeonPentium 4Intel

High-endStandardCompany

August 5, 2003 Memory and I/O 15

Extending the hierarchy even further

CPU

Regs

This caching hierarchy can be extended quite a ways.
CPU registers can be considered as small one-word caches
which hold the most frequently used data.
Main memory is a cache for slower hard drives. Programs
and data are both loaded into main memory before being
executed or edited.
Hard drives in turn act as caches for network data.
— Networks have relatively high delays and low transfer

rates, so minimizing the number and size of transfers
is desirable.

— For example, web browsers store your most recently
accessed web pages on your hard disk.

— Administrators can install network-wide web caches
like CCSO’s CacheFlow, and companies like Akamai
also provide caching services.

Cache

Main
Memory

Hard
Disk

Web
Sites

http://www.cacheflow.com/
http://www.akamai.com/

August 5, 2003 Memory and I/O 16

I/O is important!

Many tasks involve reading and processing enormous quantities of data.
— CCSO has two machines and 144GB of storage for a local web cache.
— Institutions like banks and airlines have huge databases that must be

constantly accessed and updated.
— Celera Genomics is a company that sequences genomes, with the help

of computers and 100 trillion bytes of storage!
I/O is important for us small people too!
— People use home computers to edit movies and music.
— Large software packages may come on multiple compact discs.
— Everybody and their grandparents surf the web!

http://www.celera.com/

August 5, 2003 Memory and I/O 17

I/O is slow!

How fast can a typical I/O device supply data to a computer?
— A fast typist can enter 9-10 characters a second on a keyboard.
— Common local-area network speeds go up to 100 Mbit/s, or 12.5 MB/s.
— Today’s hard disks provide transfer speeds around 40 MB per second.

Unfortunately, this is excruciatingly slow compared to modern processors
that can execute over a billion instructions per second!
— I/O performance has not increased as quickly as CPU speeds, partially

due to neglect and partially to physical limitations.
— This is slowly changing, with faster networks, better I/O buses, RAID

drive arrays, and other new technologies.

August 5, 2003 Memory and I/O 18

Measuring I/O performance

There are three general performance measurements for I/O systems.
— An application that accesses large quantities of data will demand high

bandwidth or transfer speed.
— Programs that access small amounts of data in frequent intervals may

care more about the latency or delay.
— Throughput, which is the number of transactions performed per unit

time, accounts for latency, bandwidth and overhead times.
Home network users can be affected by both bandwidth and latency.
— If you download large files over Kazaa, bandwidth will be the limiting

factor; a 4Mbit/s DSL line will outperform a 56Kbit/s modem.
— If you send short instant messages, the latency becomes the limiting

factor—it takes a long time for data to reach Swaziland.

August 5, 2003 Memory and I/O 19

Computer buses

Each computer has several shared pathways, called buses, that connect
processors, memory, and I/O devices.
The simplest kind of bus is linear, as shown below.
— All devices share the same bus.
— Only one device at a time may transfer data on the bus.

You’ve already seen lower-level buses that connect register files, RAMs
and ALUs together inside a processor.
Buses are also similar to networks that connect entire systems together.

System bus

Hard disks CD-ROM Network DisplayCPU Memory

August 5, 2003 Memory and I/O 20

Scalability

Unfortunately, this bus is not very expandable or scalable.
The more devices there are, the more contention there will be. If several
devices try to send data on the bus simultaneously, only one will succeed
while the others must wait.
Also, the more devices you connect, the longer the bus will have to be.
— It will take more time for signals to propagate.
— Keeping signals synchronized across long distances is hard.
— You also need to keep the signals from degrading.

System bus

Hard disks CD-ROM Network DisplayCPU Memory

August 5, 2003 Memory and I/O 21

Hierarchical buses

Splitting the bus into different segments can help.
— Since the CPU and memory need to communicate so often, a shorter

and faster processor-memory bus can be dedicated to them.
— A separate I/O bus would connect the slower devices to each other,

and eventually to the processor.

I/O bus

Hard disks CD-ROM Network Display

Processor-memory bus

MemoryCPU

August 5, 2003 Memory and I/O 22

A word about graphics

Video displays are one of the most-frequently used devices in systems,
especially with the advent of graphical user interfaces, games, movies
and animations.
Most newer machines place the video card on the main system bus for
faster access to the CPU and memory.

Peripheral bus

Hard disks CD-ROM Network

Video

System bus

MemoryCPU

August 5, 2003 Memory and I/O 23

Open up and say ahhh

If you open up your computer, you’ll find the motherboard, which
connects everything together.

Hypersonic PC Tom’s Hardware

http://www.tomshardware.com/
http://www.tomshardware.com/
http://www.hypersonic-pc.com/
http://www.hypersonic-pc.com/
http://www.hypersonic-pc.com/2001/index.asp
http://www.tomshardware.com/howto/20000808/images/asus.jpg

August 5, 2003 Memory and I/O 24

The mothership

CPU socket

Memory slotsSerial,
parallel,
and USB
ports IDE drive

connectors

Back Front

AGP slot

PCI slots

http://www.tomshardware.com/howto/20000808/images/asus.jpg

August 5, 2003 Memory and I/O 25

What is all that stuff?

Different motherboards support different CPUs, types of memories, and
expansion options.
This picture is an old Asus A7V motherboard (all I can afford).
— The CPU socket supports AMD Duron and Athlon processors.
— There are three DIMM slots for standard PC100 memory. Using 512MB

DIMM modules, you can get up to 1.5GB of main memory.
— The AGP slot is just for video cards.
— IDE ports connect internal storage devices like hard disks or CD-ROMs.
— PCI slots hold other internal devices such as network and sound cards.
— Serial, parallel and USB ports are used to attach external devices such

as scanners and printers.

August 5, 2003 Memory and I/O 26

How is it all connected?

North Bridge

South Bridge

Modem Sound card

Hard disks CD-ROM

Video
card

Memory

CPU

AGP
port

PCI bus

PCI slots

IDE controller Serial, parallel
and USB ports

August 5, 2003 Memory and I/O 27

Summary

Memory and peripheral bus speed are as important as processor speed in
determining overall system performance.
Caches use a little static RAM to dramatically speed up memory accesses.
— Most programs exhibit locality, meaning they are likely to access the

same or nearby memory locations in the near future.
— By keeping a copy of recently accessed data and nearby locations in

the faster cache RAM, we can typically make future accesses faster.
Buses connect the processor, memory and peripheral devices together.
— Buses and peripherals are usually much slower than the CPU itself.
— Contention between devices is a big problem that can sometimes be

solved with hierarchical buses.

	Memory and I/O
	Memory
	Introducing caches
	The principle of locality
	Temporal locality in programs
	Temporal locality in data
	Spatial locality in programs
	Spatial locality in data
	How caches take advantage of temporal locality
	How caches take advantage of spatial locality
	The devil is in the details
	Modern caches
	Caches and dies
	CPU families
	Extending the hierarchy even further
	I/O is important!
	I/O is slow!
	Measuring I/O performance
	Computer buses
	Scalability
	Hierarchical buses
	A word about graphics
	Open up and say ahhh
	The mothership
	What is all that stuff?
	How is it all connected?
	Summary

		hhuang@cs.uiuc.edu
	2003-08-03T22:19:38-0500
	Urbana, Illinois
	Howard Huang
	I am the author of this document

