
July 29, 2003 ©2000-2003 Howard Huang 1

Instruction encoding

We’ve already seen some important aspects of processor design.
— A datapath contains an ALU, registers and memory.
— Programmers and compilers use instruction sets to issue commands.

This week we’ll complete our processor with a control unit that converts
assembly language instructions into the correct datapath signals.
— Today we’ll see how assembly instructions can be stored in a binary

format, suitable for hardware manipulation.
— Tomorrow we’ll show all of the implementation details for our sample

datapath and assembly language.

July 29, 2003 Instruction encoding 2

Datapath review

The datapath contains all of
the circuitry and memory to
do a variety of computations.
The actual computations are
determined by the various
datapath control inputs in red.
— AA, BA and MB select the

sources for operations.
— FS picks an ALU function.
— MW = 1 to write to RAM.
— MD, WR and DA allow data

to be written back to the
register file.

The status bits V, C, N and Z
provide further information
about the ALU output.

D

Register file

A B

WR

DA

AA BA

A B

ALU

F

FS
V
C
N
Z

1 0
Mux B

MB

0 1
Mux D

MD

ADRS DATA

Data RAM

OUT

MW

constant

July 29, 2003 Instruction encoding 3

Instruction set review

We’ll use the three-address, register-to-register instruction set from last
week, because it matches our datapath closely.
Data manipulation instructions have one destination register and up to
two sources, which can be two registers or a register and a constant.

ADD R1, R2, R3 R1 ← R2 + R3
SUB R1, R2, #2 R1 ← R2 - 2

Data transfer instructions use register-indirect addressing mode to copy
data between registers and memory.

LD R1, (R2) R1 ← M[R2]
ST (R3), R1 M[R3] ← R1

Jumps and branches on different conditions can also be executed.

JMP LABEL1 PC ← LABEL1
BZ R2, LABEL2 if R2 = 0 then PC ← LABEL2

July 29, 2003 Instruction encoding 4

From assembly to machine language

We already saw how many types of data are represented with 0s and 1s.
— Unsigned numbers are stored as their binary equivalents.
— Signed numbers are represented using two’s-complement.
— Text is stored as sequences of ASCII values.

Today we’ll show how assembly language instructions can be represented
in a binary machine language format.
The idea of representing programs in binary and storing them in memory,
due to Alan Turing, is what permits computers to perform different tasks
easily, just by loading different programs.
Go ahead, ask about the apples.

http://www.turing.org.uk/turing/

July 29, 2003 Instruction encoding 5

Instruction fields

SUB R1, R2, #2
JMP LABEL1
BZ R2, LABEL2

Each assembly language instruction contains several components.
— An operation, such as SUB and BZ.
— Some instructions include a destination register, like R1.
— There may be one or two source operands, such as R2 and #2.
— Branches and jumps include an address, like LABEL1 and LABEL2.

We can encode an assembly instruction in binary by encoding each of the
components, or fields, separately.

July 29, 2003 Instruction encoding 6

Instruction formats

There are many instructions in our assembly language, but they can be
split into just three categories, by the number and types of operands.
Register format instructions have one destination and two sources, all of
which are registers.

ADD R1, R2, R3

Immediate format instructions also have one destination register, but the
sources include one register and one constant value.

SUB R1, R2, #2

Jump and branch format instructions always need a target address, and
there may be a source register as well.

JMP LABEL1
BZ R2, LABEL2

We will encode each assembly instruction as a 16-bit binary value.

July 29, 2003 Instruction encoding 7

Register format

Source
Register B

(SB)

Source
Register A

(SA)

Destination
Register

(DR)
Opcode

2 05 38 615 9

An example register-format instruction follows.

ADD R1, R2, R3

Our binary representation for these instructions will include three fields.
— A 7-bit opcode field that specifies the operation (e.g., ADD).
— A 3-bit destination register, DR (e.g., R1).
— Two 3-bit source registers, SA and SB (e.g., R2 and R3).

July 29, 2003 Instruction encoding 8

Immediate format

Operand
(OP)

Source
Register A

(SA)

Destination
Register

(DR)
Opcode

2 05 38 615 9

An example immediate-format instruction is shown below.

SUB R1, R2, #2

Immediate-format instructions will consist of four fields.
— A 7-bit instruction opcode.
— A 3-bit destination register, DR.
— A 3-bit source register, SA.
— A 3-bit constant operand, OP (e.g., #2).

July 29, 2003 Instruction encoding 9

PC-relative jumps and branches

We will use PC-relative addressing for jumps and branches, where the
operand specifies the number of addresses to jump or branch from the
current instruction.
We can assume each instruction occupies one 16-bit word of memory.

The operand is a signed value, so you can go either forward or backward.

LD R1, #10 1000 LD R1, #10
LD R2, #3 1001 LD R2, #3
JMP L 1002 JMP +3

K LD R1, #20 1003 LD R1, #20
LD R2, #4 1004 LD R2, #4

L ADD R3, R3, R2 1005 ADD R3, R3, R2
ST (R1), R3 1006 ST (R1), R3

July 29, 2003 Instruction encoding 10

Jump and branch format

Address
Bits 2-0 (AD)

Source
Register A

(SA)

Address
Bits 5-3 (AD)

Opcode

2 05 38 615 9

Here are two example jump and branch instructions.

BZ R2, +19
JMP -5

Jump and branch format instructions include two or three fields.
— A 7-bit instruction opcode (e.g., BZ or JMP).
— A 3-bit source register SA for branch conditions (e.g., R2).
— A 6-bit address field, AD, for jump or branch offsets (e.g., +19 or -5).

Our branch instructions include only one source register, but other types
of branches can also be done, as discussed in the current homework.

July 29, 2003 Instruction encoding 11

The address field AD

Address
Bits 2-0 (AD)

Source
Register A

(SA)

Address
Bits 5-3 (AD)

Opcode

2 05 38 615 9

AD is treated as a six-bit two’s complement number, so you can branch
up to 31 addresses forward (25-1) or 32 addresses backward (-25).
The address field is split into two parts just so the SA field can occupy the
same position (bits 5-3) in all three instruction formats.

July 29, 2003 Instruction encoding 12

Instruction format uniformity

Notice how we tried to keep the different instruction formats as similar
as possible.
— The Opcode field always appears in the same position (bits 15-9).
— DR is in the same place for register and immediate instructions.
— The SA field also appears in the same position, even though this

forced us to split AD into two parts for jumps and branches.
On Wednesday we’ll see how this leads to a simpler control unit.

Source
Register B

(SB)

Source
Register A

(SA)

Destination
Register

(DR)
Opcode

2 05 38 615 9

Operand
(OP)

Source
Register A

(SA)

Destination
Register

(DR)
Opcode

Address
Bits 2-0 (AD)

Source
Register A

(SA)

Address
Bits 5-3 (AD)

Opcode

July 29, 2003 Instruction encoding 13

Instruction formats and the datapath

The instruction formats are closely related to the datapath design.
— Because our register addresses DR, SA and SB are each three bits long,

this instruction set can only support eight registers.
— The constant operand OP is also three bits long. Its value will have to

be sign-extended if the ALU supports wider inputs and outputs.
Conversely, if the datapath supported more registers or larger constants,
we would have to increase the length of our instructions.

Operand
(OP)

Source
Register A

(SA)

Destination
Register

(DR)
Opcode

2 05 38 615 9

July 29, 2003 Instruction encoding 14

Filling in the operand fields

It’s easy to fill in the operand fields in our binary instructions, given the
original assembly instruction.
Registers are represented by their numbers. For example, we can denote
the operand R1 by 001.

Constants and address offsets are just stored in two’s-complement form.
For example, the constant #2 is 010, while the address +19 is encoded as
010011.

SBSADROpcodeInstruction

011010001-------ADD R1, R2, R3

OPSADROpcodeInstruction

010010001-------SUB R1, R2, #2

ADSAADOpcodeInstruction

011010010-------BZ R2, +19

July 29, 2003 Instruction encoding 15

Filling in the opcode fields

The hard part is mapping operations like ADD and BZ to binary opcodes!
One solution is to just select a random code for each possible operation.
— This is (more or less) what we’ll do for the last assignment, MP4.
— However, the selection of opcodes can have a significant impact on

the complexity of the processor, much like the assignment of states
in sequential circuit design.

Today we’ll see a more methodical approach to assigning opcodes.
— Similar operations will have similar opcodes.
— This will make our hardware much simpler in Wednesday’s lecture.

Unfortunately you’ll have to understand Wednesday’s material to fully
appreciate some of the opcode selection choices we make today.

July 29, 2003 Instruction encoding 16

Organizing our operations

To start, we’ll divide our operations into four categories. The instructions
in each category will need similar datapath control signals, as we’ll show
on Wednesday.

We’ll use the two most significant bits in every opcode to indicate which
category the instruction belongs to. The rest of the opcode will indicate a
particular operation within that category.

11
10
01
00

Opcode bits 6-5

Branches and jumps
Immediate ALU operations
Data transfer operations
Register-format ALU operations

Instruction category

10SUB R1, R2, #2
11BZ R2, +19

01LD R1, (R2)
00ADD R1, R2, R3

OpcodeInstruction

July 29, 2003 Instruction encoding 17

Immediate and register-based ALU operations

For both register and immediate ALU
operations, a simple approach is to fill in
the rest of the opcode bits with the
matching ALU function selection code.
For example, a register-based XOR would
have the opcode 0001100.
— The first two bits 00 denote a register-

based ALU instruction.
— 01100 denotes the ALU’s add function.

Here are two other examples.

F = sl B (shift left)11000
F = sr B (shift right)10100
F = B10000
F = A’01110
F = A ⊕ B01100
F = A ∨ B (OR)01010
F = A ∧ B (AND)01000
F = A00111
F = A – 100110
F = A + B’ + 100101
F = A + B’00100
F = A + B + 100011
F = A + B00010
F = A + 100001
F = A00000

OperationFS

00101
00010

10SUB R1, R2, #2
00ADD R1, R2, R3

OpcodeInstruction

July 29, 2003 Instruction encoding 18

Register-indirect data transfer operations

Our second general category of instructions are data transfer operations,
but we have just two of them: loads and stores.
We can use the third bit of the opcode to distinguish between them.
— The first three bits of the opcode for ST will be 010.
— The first three bits of the opcode for LD will be 011.

The rest of the opcode bits aren’t needed here.
— Keeping the same length for all of our opcodes, even when they’re

not all used, makes Wednesday’s control unit easier to design.
— This also leaves room for expansion in the instruction set; if we later

decide to add other types of loads and stores, we’ll have four extra
bits to work with.

1
0

XXXX
XXXX

01LD R1, (R2)
01ST (R1), R2

OpcodeInstruction

July 29, 2003 Instruction encoding 19

Immediate-mode data transfer operations

What about immediate loads and stores?

LD R1, #19
ST (R2), #-5

These will actually get implemented as
immediate arithmetic operations which
use the ALU’s transfer capability.
We’ll see more about this on Wednesday,
but for now you should know that these
immediate transfers are in a different
category from register-indirect transfers.

F = sl B (shift left)11000
F = sr B (shift right)10100
F = B10000
F = A’01110
F = A ⊕ B01100
F = A ∨ B (OR)01010
F = A ∧ B (AND)01000
F = A00111
F = A – 100110
F = A + B’ + 100101
F = A + B’00100
F = A + B + 100011
F = A + B00010
F = A + 100001
F = A00000

OperationFS

July 29, 2003 Instruction encoding 20

Jump instructions

Our last category included jump and branch instructions.
Just as for data transfer instructions, we’ll use one additional opcode bit
to distinguish between jumps and branches.
— Branch opcodes will all start with the three bits 110.
— Jump opcodes will start with the bits 111.

Our instruction set has only one PC-relative jump instruction so the rest
of the opcode bits are unused, much like for loads and stores.

1
0

XXXX

11JMP -5
11BZ R2, +19

OpcodeInstruction

July 29, 2003 Instruction encoding 21

Branch instructions

We can include all the branch conditions
discussed last week, which are repeated on
the right.
We’ll just pick a three-bit code to denote
each possible branch condition, and insert
it into the branch opcode.
This means that one of the four remaining
opcode bits will be left unused; the book
leaves the middle bit unused.
For example, BZ has the opcode 110X011.
— The bits 110 indicate a branch.
— 011 specifies branch if zero.

BNZ
BNV
BNN
BNC
BZ
BV
BN
BC

Branch

111Non-zero
110No overflow
101Positive
100Carry clear
011Zero
010Overflow
001Negative
000Carry set

CodeCondition

101
011

0
0

X
X

11BNN R3, -5
11BZ R2, +19

OpcodeInstruction

July 29, 2003 Instruction encoding 22

Sample instruction encodings

We’re finally done! Now we know the binary fields that each machine
language instruction requires, and we know how to encode all of them.
Here are the complete machine language translations of some example
assembly language instructions.
— The meaning of bits 8-0 depends on the instruction format.
— The colors are not supposed to blind you, but to help you distinguish

between destination, source, constant and address fields.

011001010110x011Jump/branchBZ R1, +19

0110100010000010RegisterADD R1, R2, R3

011xxx111111xxxxJump/branchJMP -5

0101011011000100ImmediateSUB R5, R5, #2

xxx000001011xxxxImmediateLD R1, (R0)

Bits 2-0Bits 5-3Bits 8-6
Bits 15-9
(Opcode)FormatInstruction

July 29, 2003 Instruction encoding 23

Summary

Today we defined a binary machine language for the instruction set from
last Wednesday.
— Each assembly language instruction contains several component fields.
— Different instructions are encoded using different binary formats, but

keeping those formats uniform will help simplify our hardware.
— We also tried to assign similar opcodes to “similar” instructions.
— Register, constant and address offset operands are represented as just

unsigned or signed binary numbers.
This instruction encoding is closely related to our example datapath. For
example, our opcodes include ALU function selection codes, and the
number of usable registers is limited by the length of each instruction.
This is just one example of how to define a machine language. You will be
using a different instruction encoding for MP4, for instance.
Tomorrow we’ll show how to build a control unit that corresponds to our
datapath and instruction set. This will complete our processor!

	Instruction encoding
	Datapath review
	Instruction set review
	From assembly to machine language
	Instruction fields
	Instruction formats
	Register format
	Immediate format
	PC-relative jumps and branches
	Jump and branch format
	The address field AD
	Instruction format uniformity
	Instruction formats and the datapath
	Filling in the operand fields
	Filling in the opcode fields
	Organizing our operations
	Immediate and register-based ALU operations
	Register-indirect data transfer operations
	Immediate-mode data transfer operations
	Jump instructions
	Branch instructions
	Sample instruction encodings
	Summary

		hhuang@cs.uiuc.edu
	2003-07-28T23:54:51-0500
	Urbana, Illinois
	Howard Huang
	I am the author of this document

