
July 28, 2003 ©2000-2003 Howard Huang 1

Other instruction set architectures

Today we’ll first look at a longer example program, starting with some C
code and translating it into our assembly language from last time.
Next we discuss some alternative instruction set architectures.
— There are different ways of specifying memory addresses.
— Instructions can also have different numbers and types of operands.

We will use last week’s datapath and instruction set for the rest of the
lectures and the last machine problem, but it’s important to see some
other possible designs.

July 28, 2003 Other instruction set architectures 2

Representing characters

All computer data must be stored in a numeric (binary) format—including
alphabetic characters!
Each character can be represented by a one-byte ASCII code. The codes
for some letters, digits and symbols are shown below.

del127o111_95O79?63/47
~126n110^94N78>62.46
}125m109]93M77=61-45
|124l108\92L76<60,44
{123k107[91K75;59+43
z122j106Z90J74:58*42
y121I105Y89I73957)41
x120h104X88H72856(40
w119g103W87G71755’39
v118f102V86F70654&38
u117e101U85E69553%37
t116d100T84D68452$36
s115c99S83C67351#35
r114b98R82B66250”34
q113a97Q81A65149!33
p112`96P80@64048space32

July 28, 2003 Other instruction set architectures 3

Representing strings

In C and C++, a string is stored as an array of bytes.
— Each array element is an ASCII code representing one character.
— A 0 value marks the end of the array or string.

For example, “The Godfather” can be stored as a 14-byte array.

Array elements are stored in contiguous memory locations. For example,
if the first letter of “The Godfather” is at address 1000, the terminating
zero will be at address 1013.

T

84

d

100

\0rehtafoGeh

0114101104116971021117132101104

10131012101110101009100810071006100510041003100210011000

d

100

\0rehtafoGehT

011410110411697102111713210110484

July 28, 2003 Other instruction set architectures 4

String manipulation example

Let’s write a short program to count the number of space characters that
appear in a string.
We’ll start with the higher-level C/C++ code given below.
— Assume the starting address of the string is stored in variable R0, and

the number of spaces found will be placed in variable R3.
— We just loop over the character array, counting the number of times

that ASCII code 32 appears. The loop stops when the array element 0,
denoting the end of the string, is found.

char R0[];
int i, R3;

R3 = 0;
i = 0;
while (R0[i] != 0) {

if (R0[i] == 32)
R3++;

i++;
}

July 28, 2003 Other instruction set architectures 5

Assembly language translation

Here is a direct translation of the array version.
— R0 contains the string’s starting address.
— R1 contains the loop index, which was “i” in the C code.
— R3 contains R0[i].

We also need the address of R0[i] to load the data; this is stored in R2.

LD R3, #0 // R3 counts number of spaces
LD R1, #0 // Use R1 as index i

LOOP: ADD R2, R0, R1 // R2 = address of R0[i]
LD R2, (R2) // R2 = R0[i]
BZ R2, DONE // Exit if R2 = 0 (end of string)
SUB R2, R2, #32 // If R2 != 32 then...
BNZ R2, NEXT // ...go on to next character
ADD R3, R3, #1 // Increment space counter R3

NEXT: ADD R1, R1, #1 // Increment string index
JMP LOOP // Repeat

DONE: ... // Rest of program

July 28, 2003 Other instruction set architectures 6

Translation notes

Even though this is such a simple program, it illustrates many differences
between high-level and low-level languages!
Our assembly code uses registers to represent C variables. However, the
string itself is stored in RAM, since it could be quite long and we wouldn’t
necessarily have enough registers.
The string characters in RAM must be loaded into a register before they
can be manipulated.
— We must specify the exact location of each element that we access.

If the RAM word size is one byte and the string starts at address R0,
then character R1 will be at address R0 + R1.

— The C code includes R0[i] twice, but we don’t have to do two load
operations. Instead, we can just re-use register R2.

Our assembly language has only a limited set of branch instructions, so
testing if R2 = 32 takes some extra thought. The code here works since if
R2 – 32 = 0, then R2 = 32.
The DONE label represents the rest of the program—what’s shown here is
just a fragment.

July 28, 2003 Other instruction set architectures 7

A shorter version

The loop index R1 isn’t really necessary.
— We increment R1 on each loop iteration, but all we do is add it to the

string address R0, to access the next character of the array.
— We can make our program a bit shorter by incrementing R0 itself, and

dispensing with R1 completely.

LD R3, #0
LD R1, #0

LOOP: ADD R2, R0, R1
LD R2, (R2)
BZ R2, DONE
SUB R2, R2, #32
BNZ R2, NEXT
ADD R3, R3, #1

NEXT: ADD R1, R1, #1
JMP LOOP

DONE: ...

LD R3, #0

LOOP:
LD R2, (R0)
BZ R2, DONE
SUB R2, R2, #32
BNZ R2, NEXT
ADD R3, R3, #1

NEXT: ADD R0, R0, #1
JMP LOOP

DONE: ...

July 28, 2003 Other instruction set architectures 8

Pointers

This new version corresponds closely to C or C++ code that uses pointers,
which you may have worked with before.

LD R3, #0
LOOP: LD R2, (R0)

BZ R2, DONE
SUB R2, R2, #32
BNZ R2, NEXT
ADD R3, R3, #1

NEXT: ADD R0, R0, #1
JMP LOOP

DONE: ...

char *R0;
int R3;

R3 = 0;
while (*R0 != 0) {

if (*R0 == 32)
R3++;

R0++;
}

July 28, 2003 Other instruction set architectures 9

Addressing modes

The first ISA design issue we’ll see are different addressing modes, which
let you specify memory addresses in various ways.
— Different modes may be useful in different situations.
— Each mode has its own notation in assembly language.
— The location that is actually accessed is called the effective address.

The addressing modes that are available will depend on the datapath.
— Our simple datapath only supports two forms of addressing.
— Older processors like the 8086 have zillions of addressing modes.

We’ll introduce some of the more common ones.

July 28, 2003 Other instruction set architectures 10

Immediate addressing

One of the simplest modes is immediate addressing, where the operand
itself is accessed.

LD R1, #1999 R1 ← 1999

This mode is a good way to specify initial values for registers.
We’ve already used immediate addressing several times.
— We introduced it last Wednesday with some short examples.
— It appears in the string conversion program you just saw.

July 28, 2003 Other instruction set architectures 11

Direct addressing

A second mode is direct addressing, where the operand is a constant that
represents a memory address.

LD R1, 500 R1 ← M[500]

Here the effective address is 500, which is just the operand itself.
This is useful for working with pointers.
— You can think of the constant as a pointer.
— The register gets loaded with the data at that address.

July 28, 2003 Other instruction set architectures 12

Register indirect addressing

We already saw register indirect mode, where the operand is a register
that contains a memory address.

LD R1, (R0) R1 ← M[R0]

The effective address would be the value in R0.
This is also useful for working with pointers.
— R0 might be a pointer, and R1 is loaded with the data at that address.
— This is similar to R1 = *R0 in C or C++.

What’s the difference between this register indirect and direct modes?
— In direct mode, the address is a constant that is hard-coded into the

program and cannot be changed.
— Here the contents of R0, and hence the address being accessed, can

easily be changed.

July 28, 2003 Other instruction set architectures 13

Stepping through arrays

Register indirect mode makes it easy to access contiguous locations in
memory, such as elements of an array.
If R0 is the address of the first element in an array, we can easily access
the second element too.

LD R1, (R0) // R1 contains the first element
ADD R0, R0, #1
LD R2, (R0) // R2 contains the second element

This is so common that some instruction sets can automatically increment
the register for you.

LD R1, (R0)+ // R1 contains the first element
LD R2, (R0)+ // R2 contains the second element

Such instructions can be used within loops to access an entire array.

July 28, 2003 Other instruction set architectures 14

Indexed addressing

Operands with indexed addressing include a constant and a register.

LD R1, 500(R0) R1 ← M[R0 + 500]

The effective address is the register data plus the constant. For instance,
if R0 contains 25, the effective address here would be 525.
We can use this addressing mode to access arrays also.
— The constant is the array address, while the register contains an index

into the array.
— For instance, the instruction above might load the 25th element of an

array that starts at memory location 500.
This form of addressing combines the ideas of direct and register-indirect
modes, so it’s more complex but also more flexible.
This is the only mode supported in the MIPS instruction set, which you’ll
work with more if you go on to take CS232.

July 28, 2003 Other instruction set architectures 15

PC-relative addressing

In PC-relative addressing, the operand is a constant that is added to the
program counter to produce the effective memory address.

LD R1, $30 R1 ← M[PC + 30]

This is similar to indexed addressing, except the PC is used instead of a
regular register.
— For example, if this instruction was stored at memory address 200,

then the effective address would be 230.
— In some systems the PC actually points to the next instruction, in

which case the effective address here would be 231.
Relative addressing is often used in jump and branch instructions.
— For instance, JMP $30 lets you skip the next 30 instructions.
— A negative constant lets you jump backwards, which is common in

writing loops as we’ve seen already.

July 28, 2003 Other instruction set architectures 16

Indirect addressing

The most complicated mode that we’ll look at is indirect addressing. The
operand is a constant that represents a memory location, which refers to
another location, whose contents are then accessed.

LD R1, [360] R1 ← M[M[360]]

The effective address here is M[360].
Indirect addressing is useful for working with pointers to pointers, which
are sometimes also called “handles.”
— The constant represents a pointer to a pointer.
— In C, we might write something like R1 = **ptr.

July 28, 2003 Other instruction set architectures 17

Addressing mode summary

R1 ← M[M[CONST]]LD R1, [CONST]Indirect

R1 ← M[PC + CONST]LD R1, $CONSTRelative

R1 ← M[R0 + CONST]LD R1, CONST(R0)Indexed

R1 ← M[R0]LD R1, (R0)Register indirect

R1 ← M[CONST]LD R1, CONSTDirect

R1 ← CONSTLD R1, #CONSTImmediate

Register transfer equivalentNotationMode

July 28, 2003 Other instruction set architectures 18

Number of operands

Another way to classify instruction sets is by the number of operands that
each data manipulation instruction can have.
Our examples last week were all three-address instructions, because each
one had up to three operands—two sources and one destination.

This provides the most flexibility, but some instruction sets allow fewer
than three operands.

ADD R0, R1, R2

operation

destination sources

operands

R0 ← R1 + R2

Register transfer instruction:

July 28, 2003 Other instruction set architectures 19

Two-address instructions

In two-address instructions, the first operand acts as both the destination
and one of the sources.

Here are some other examples, with the corresponding register transfer
operation and C code.

ADD R3, #1 R3 ← R3 + 1 R3++;
MUL R1, #5 R1 ← R1 * 5 R1 *= 5;
NOT R1 R1 ← R1’ R1 = ~R1;

R0 ← R0 + R1

Register transfer instruction:

ADD R0, R1

operation

destination
and source 1

source 2

operands

July 28, 2003 Other instruction set architectures 20

One-address instructions

Some computers, like my old Apple II, have one-address instructions.
The CPU has a special register called the accumulator which implicitly
serves as the destination and one of the sources—it “accumulates” the
result of a computation.

Here is some code to increment M[R0], using register-indirect addressing.

LD (R0) ACC ← M[R0]
ADD #1 ACC ← ACC + 1
ST (R0) M[R0] ← ACC

ADD R0

operation source

ACC ← ACC + R0

Register transfer instruction

July 28, 2003 Other instruction set architectures 21

The ultimate: zero addresses

If the destination and sources are all implicit, then you wouldn’t have to
specify any operands at all!
This is possible with processors that use a stack architecture.
— Operands are pushed on a stack, which is just a reserved area in RAM.

The most recently pushed element is at the top of the stack, or TOS.
— Operations use the topmost stack elements as their operands. Those

values are then replaced with the operation’s result.
Examples of stack-based systems include Hewlett-Packard calculators,
Java intermediate bytecode, and Intel’s 8087 floating-point architecture.

July 28, 2003 Other instruction set architectures 22

Stack architecture example

From left to right, here are three stack instructions, and what the stack
looks like after each example instruction is executed.

This sequence of stack operations corresponds to one register transfer
instruction.

TOS ← R1 + R2

... stuff 2 ...

... stuff 1 ...

PUSH R1 PUSH R2 ADD

(Top)

(Bottom)

... stuff 2 ...

... stuff 1 ...

R1 + R2R1 R2

... stuff 2 ...

... stuff 1 ...

R1

July 28, 2003 Other instruction set architectures 23

Data movement instructions

Finally, the types of operands allowed in data manipulation instructions is
another way of characterizing instruction sets.
— So far, we’ve assumed that ALU operations can have only register and

constant operands.
— Many real instruction sets allow memory-based operands as well.

We’ll use the book’s example and illustrate how the following operation
can be translated into some different assembly languages.

X = (A + B) × (C + D)

Assume that A, B, C, D and X are really memory addresses.

July 28, 2003 Other instruction set architectures 24

Register-to-register architectures

Up until now our programs have used a register-to-register or load/store
architecture, which matches our datapath from last week nicely.
— Operands in data manipulation instructions must be registers.
— Data transfer instructions move data between memory and registers.

In a register-to-register, three-address instruction set, we can translate
the operation X = (A + B)(C + D) into the following code.

LD R1, A R1 ← M[A] // Use direct addressing
LD R2, B R2 ← M[B]
ADD R3, R1, R2 R3 ← R1 + R2 // R3 = M[A] + M[B]

LD R1, C R1 ← M[C]
LD R2, D R2 ← M[D]
ADD R1, R1, R2 R1 ← R1 + R2 // R1 = M[C] + M[D]

MUL R1, R1, R3 R1 ← R1 * R3 // R1 has the result
ST X, R1 M[X] ← R1 // Store that into M[X]

July 28, 2003 Other instruction set architectures 25

Memory-to-memory architectures

In a memory-to-memory architecture, all data manipulation instructions
use memory addresses as operands.
With a memory-to-memory, three-address instruction set, we could do
the operation X = (A + B)(C + D) a little more simply.

Here’s the same operation but with a two-address instruction set.

ADD X, A, B M[X] ← M[A] + M[B]
ADD T, C, D M[T] ← M[C] + M[D] // Temporary storage
MUL X, X, T M[X] ← M[X] * M[T]

MOVE X, A M[X] ← M[A] // Copy M[A] to M[X]
ADD X, B M[X] ← M[X] + M[B] // Add M[B]
MOVE T, C M[T] ← M[C] // Copy M[C] to M[T]
ADD T, D M[T] ← M[T] + M[D] // Add M[D]
MUL X, T M[X] ← M[X] * M[T] // Multiply

July 28, 2003 Other instruction set architectures 26

Register-to-memory architectures

In a register-to-memory architecture, data manipulation instructions can
access both registers and memory.
With two-address instructions, we might do the following.

MOV X, A M[X] ← M[A] // Copy M[A] to M[X]
ADD X, B M[X] ← M[X] + M[B] // Add M[B]
LD R1, C R1 ← M[C] // Load M[C] into R1
ADD R1, D R1 ← R1 + M[D] // Add M[D]
MUL X, R1 M[X] ← M[X] * R1 // Multiply

July 28, 2003 Other instruction set architectures 27

Size and speed

There are many factors to consider when deciding how many and what
kind of operands and addressing modes to support in a processor.
These decisions can affect the size of machine language programs.
— Permitting more operands leads to longer instructions.
— Memory addresses are long compared to register file addresses (since

memories have larger capacities), so instructions with memory-based
operands are typically longer than those with register operands.

There is also an impact on the speed of the program.
— Memory accesses are much slower than register accesses.
— Longer programs access memory more, just to load the program!

Most newer processors use register-to-register designs.
— Reading from registers is faster than reading from RAM.
— Using register operands also leads to shorter instructions.

July 28, 2003 Other instruction set architectures 28

Summary

Addressing modes specify how instructions access memory.
— Our sample ISA supports only immediate and register indirect modes.
— Other processors may support many other addressing modes.

Data manipulation instructions may have from 0 to 3 operands.
— We will mostly work with a three-address instruction set in this class.
— Two-address, one-address and zero-address instructions are possible.

Instruction sets may permit different types of operands.
— Our datapath supports a register-to-register architecture, where data

operands must be registers or constants.
— In register-to-memory or memory-to-memory ISAs, the operands could

be memory addresses or a mix of addresses and registers.
“The Godfather” is a 14-byte C string.

	Other instruction set architectures
	Representing characters
	Representing strings
	String manipulation example
	Assembly language translation
	Translation notes
	A shorter version
	Pointers
	Addressing modes
	Immediate addressing
	Direct addressing
	Register indirect addressing
	Stepping through arrays
	Indexed addressing
	PC-relative addressing
	Indirect addressing
	Addressing mode summary
	Number of operands
	Two-address instructions
	One-address instructions
	The ultimate: zero addresses
	Stack architecture example
	Data movement instructions
	Register-to-register architectures
	Memory-to-memory architectures
	Register-to-memory architectures
	Size and speed
	Summary

		hhuang@cs.uiuc.edu
	2003-07-27T22:05:48-0500
	Urbana, Illinois
	Howard Huang
	I am the author of this document

