
July 22, 2003 ©2000-2003 Howard Huang 1

Datapaths

The rest of the semester focuses on computer architecture—combining
combinational and sequential circuit elements to produce a computer.
We’ll spend most of our time on the central processor unit or CPU.
— The datapath does all of the actual data processing.
— A control unit tells the datapath what to do and when to do it.
— An instruction set is the programmer’s interface to the CPU.

Today will be devoted to the datapath.

July 22, 2003 Datapaths 2

Keep it simple!

Abstraction is very helpful in understanding processors.
— Although we studied how devices like registers and muxes are built,

we don’t need that level of detail here.
— You should focus more on what these component devices are doing,

and less on how they work.
Otherwise it’s easy to get bogged down in the details, and datapath and
control units can be a little intimidating.

July 22, 2003 Datapaths 3

A basic CPU model

ALU

Registers

A processor is just one big sequential circuit.
— Some registers are used to store values, which form the state.
— An ALU performs various operations on the stored data.

CS375 and other theory courses talk more about state machines and how
they can model computers.

July 22, 2003 Datapaths 4

Register transfers

ALU

Registers

The processor just moves data between registers, possibly with some ALU
computations.
To describe this data movement and computation more precisely, we’ll
introduce a register transfer language.
— The objects in the language are registers.
— The basic operations are transfers, in which data is copied from one

register to another.
— We can also perform arithmetic operations on data being transferred.

July 22, 2003 Datapaths 5

Register transfer language

Two-character names denote registers, such as R0, R1, DR, or SA.
Arrows indicate data transfers. For example, we can copy the contents of
source register R2 into the destination register R1 in one clock cycle.

R1 ← R2

A conditional transfer is performed only if the Boolean condition in front
of the operation is true. Below, we transfer R3 to R2 only when K = 1.

K: R2 ← R3

Multiple transfers on the same clock cycle are separated by commas.

R1 ← R2, K: R2 ← R3

July 22, 2003 Datapaths 6

Register transfer operations

We can apply arithmetic operations to registers.

R1 ← R2 + R3
R3 ← R1 - 1

Bitwise logical operations can be expressed. We use special symbols for
AND and OR to prevent confusion with arithmetic operations.

R2 ← R1 ∧ R2 bitwise AND
R3 ← R0 ∨ R1 bitwise OR

Finally, we can shift values left or right by one bit. The source register is
not modified, and we assume that the shift input is always 0.

R2 ← sl R1 left shift
R2 ← sr R1 right shift

July 22, 2003 Datapaths 7

What’s inside the datapath?

ALU

Registers

Now we’ll look in detail at the processor’s datapath, which is responsible
for doing all of the dirty work.
— An ALU does computations, as we’ve seen before.
— A limited set of registers serves as fast temporary storage.
— A larger, but slower, random-access memory is also available.

July 22, 2003 Datapaths 8

The all-important ALU

A B

ALU

F

Z
N
C
V

FS

nn

n

m

The main job of a central processing unit is to “process,” or to perform
computations... Remember the ALU from a few weeks ago?
We’ll use the following general block symbol for the ALU.
— A and B are two n-bit numeric inputs.
— FS is an m-bit function select code, which picks one of 2m functions.
— The n-bit result is called F.
— Several status bits provide more

information about the output F.
• V = 1 for signed overflow.
• C is the carry out.
• N = 1 if the result is negative.
• Z = 1 if the result is 0.

This should all look familiar from MP2!

July 22, 2003 Datapaths 9

ALU functions

For concrete examples, we’ll use the
ALU as it’s presented in the textbook.
The table of operations on the right is
taken from page 373.
The function select code FS is 5 bits
long, but there are only 15 different
functions here.
We use different symbols for AND and
OR to avoid confusion with arithmetic
operations.

F = sl B (shift left)11000
F = sr B (shift right)10100
F = B10000
F = A’01110
F = A ⊕ B01100
F = A ∨ B (OR)01010
F = A ∧ B (AND)01000
F = A00111
F = A – 100110
F = A + B’ + 100101
F = A + B’00100
F = A + B + 100011
F = A + B00010
F = A + 100001
F = A00000

OperationFS

July 22, 2003 Datapaths 10

Register files

As we mentioned already, the
ALU inputs and outputs will
come from and go to a set of
registers.
Here is a block symbol for a
2k × n register file.
— There are 2k registers, so

each register address is k
bits long.

— Each register contains an
n-bit value, so the data
inputs and outputs have
to be n bits wide.

nn

n

k k

k

D data

Write

D address

A address B address

A data B data

Register File

D

WR

DA

AA

A B

BA

July 22, 2003 Datapaths 11

Accessing the register file

You can read two registers at
once by supplying the AA and
BA inputs. The data appears
on the A and B outputs.
You can write to a register by
using the DA and D inputs, and
setting WR = 1.
These are registers so there
must be a clock signal, even
though we usually don’t show
it in diagrams.
— You can read from the

register file at any time.
— Data is written only on the

positive edge of the clock.

nn

n

k k

k

D data

Write

D address

A address B address

A data B data

Register File

D

WR

DA

AA

A B

BA

July 22, 2003 Datapaths 12

What’s inside the register file

Here’s a 4 × n register file. (We’ll assume a 4 × n register file for all our
examples today.)

D0 D1 D2 D3
S0
S1 Q

D3 D2 D1 D0
S0

Q S1

R0

R1

R2

R3

S0 Q0
S1 Q1

Q2
EN Q3

DA0
DA1

WR

AA0
AA1

BA0
BA1

A B

D

n n

n

July 22, 2003 Datapaths 13

Explaining the register file

n

n
Load

Data input

Data output

This block diagram represents an n-bit register.
— When Load = 1, the data input is stored into the register.
— When Load = 0, the register just keeps its current value.

The 2-to-4 decoder selects one of the four registers for writing. If WR = 1,
the decoder will be enabled and one of the Load signals will be active.
The n-bit 4-to-1 muxes select the two register file outputs A and B, based
on the inputs AA and BA.

July 22, 2003 Datapaths 14

My first datapath

D data

Write

D address

A address B address

A data B data

Register File

WR

DA

AA BA

A B

ALU

F

Z
N
C
V

FSFS

n

n n

2

2

2

5

So here is the most basic datapath.
— The ALU’s two data inputs come

from the register file.
— The ALU computes a result, which

is saved back to the registers.
WR, DA, AA, BA and FS are control
signals. Their values determine the
exact actions taken by the datapath—
which registers are used and for what
operation.
Remember that many of the signals
here are actually multi-bit values!

July 22, 2003 Datapaths 15

An example computation

D data

Write

D address

A address B address

A data B data

Register File

WR

DA

AA BA

A B

ALU

F

Z
N
C
V

FSFS
00010

01 11

00

1

Let’s look at the proper control signals
for the operation below.

R0 ← R1 + R3

Set AA = 01 and BA = 11. This causes
the value in R1 to appear at A data,
and the value in R3 to appear at the
output B data.
Set the ALU function select input FS =
00010, to perform the addition A + B.
Set DA = 00 and WR = 1. On the next
positive clock edge, the ALU’s result
(R1 + R3) will be stored in R0.

July 22, 2003 Datapaths 16

Two questions

D data

Write

D address

A address B address

A data B data

Register File

WR

DA

AA BA

A B

ALU

F

Z
N
C
V

FSFS

Four registers isn’t a lot. What if we
need more storage?
Who exactly decides which registers
are read and written and which ALU
function is executed?

July 22, 2003 Datapaths 17

We can access RAM also

D data
Write

D address

A address B address

A data B data

Register File

WR

DA

AA BA

A B

ALU

F
Z
N
C
V

FS

n

Q D1
D0

S

RAM

ADRS
DATA
CS
WR

OUT

MW
+5V

n
n

n

FS

n

MD

1

Here’s one way to connect RAM
to our existing datapath.
To write to RAM, we must give
an address and a data value;
these will come straight from
the register file.
— We connect A data to the

memory ADRS input.
— We also send B data to the

memory DATA input.
Finally, we must set MW = 1 to
write to the RAM. (It’s called
MW because WR is already used
by the register file.)

July 22, 2003 Datapaths 18

Reading from RAM

D data
Write

D address

A address

A data B data

WR

DA

AA BA

A B

ALU

F
Z
N
C
V

FS

n

D0

RAM

ADRS
DATA
CS
WR

OUT

MW
+5V

n
n

n

FS

n

MD
1

0

Register File

B address

Q D1
S

To read from RAM, A data must
supply an address, and we also
need to ensure MW = 0.
The RAM output should be sent
to the register file for storage.
This means that the register
file’s D data input could come
from either the ALU output or
the RAM.
A new multiplexer MD selects a
source for the register file.
— If MD = 0, the ALU output can

be stored in the register file.
— If MD = 1, the RAM output is

sent to the registers instead.

July 22, 2003 Datapaths 19

Notes about this setup

D data
Write

D address

A address

A data B data

WR

DA

AA BA

A B

ALU

F
Z
N
C
V

FS

n

D0

RAM

ADRS
DATA
CS
WR

OUT

MW
+5V

n
n

n

FS

n

MD

Register File

B address

Q D1
S

We now have a way to copy
data between our register file
and the RAM.
Notice that there’s no way for
the ALU to directly access the
memory—RAM values must go
through the register file first.
Here the size of the memory is
limited by the size of the
registers; with n-bit registers,
we can only use a 2n × n RAM.
For simplicity we’ll assume the
RAM is at least as fast as the
CPU clock, even though this is
not exactly true in real life.

July 22, 2003 Datapaths 20

Memory transfer notation

In our transfer language, the contents of random
access memory address X are denoted as M[X].
Here are two examples.
— The first word in RAM is M[0].
— If register R1 holds an address, then M[R1] is

the data at that address.
The M[] notation is like a pointer dereference
operation in C or C++.

July 22, 2003 Datapaths 21

Example sequence of operations

Here is a simple series of register transfer instructions.

R3 ← M[R0]
R3 ← R3 + 1
M[R0] ← R3

This just increments the value stored at address R0 in RAM.
— R0 is the first register in our register file. We’ll assume it contains a

valid memory address.
— Again, our ALU only operates on registers, so the RAM contents must

first be loaded into a register, and then saved back to RAM.
We can perform these three register transfer operations in our datapath
over three consecutive clock cycles.

July 22, 2003 Datapaths 22

R3 ← M[R0]

1

11

00

1

0

D data
Write

D address

A address

A data B data

WR

DA

AA BA

A B

ALU

F
Z
N
C
V

FS

n

D0

RAM

ADRS
DATA
CS
WR

OUT

MW
+5V

n
n

n

FS

n

MD

Register File

B address

Q D1
S

AA should be set to 00, to read
register R0.
The value in R0 will be sent to
the RAM address input, so M[R0]
appears as the RAM output OUT.
MD must be 1, so the RAM output
goes to the register file.
To store something into R3, we
need to set DA = 11 and WR = 1.
MW should be 0, so nothing is
accidentally changed in RAM.
We did not use the ALU or the
second register file output for
this operation, so FS and BA can
be don’t care conditions.

July 22, 2003 Datapaths 23

R3 ← R3 + 1

D data
Write

D address

A address

A data B data

WR

DA

AA BA

A B

ALU

F
Z
N
C
V

FS

n

D0

RAM

ADRS
DATA
CS
WR

OUT

MW
+5V

n
n

n

FS

n

MD

1

11

11

0

0
00001

Register File

B address

Q D1
S

AA = 11, so R3 is read from the
register file and directed to the
ALU’s A input.
FS needs to be 00001 for the
operation A + 1. Then, R3 + 1
appears as the ALU output F.
If MD is set to 0, this output will
go back to the register file.
To write to R3, we need to set
DA = 11 and WR = 1.
Again, MW should be 0 so that
RAM contents aren’t changed.
We didn’t use BA.

July 22, 2003 Datapaths 24

M[R0] ← R3

D data
Write

D address

A address

A data B data

WR

DA

AA BA

A B

ALU

F
Z
N
C
V

FS

n

D0

RAM

ADRS
DATA
CS
WR

OUT

MW
+5V

n
n

n

FS

n

MD

0

00

1

11

Register File

B address

Q D1
S

Finally, we must store the value
of R3 into RAM address R0.
The memory address comes from
“A data” and the contents come
from “B data.” We have to set
AA = 00 and BA = 11, to send R0
to ADRS and R3 to DATA.
MW must be 1 to write to RAM.
No register updates are needed,
so WR should be 0, which means
MD and DA are unused.
We also didn’t need the ALU, so
FS can be ignored.

July 22, 2003 Datapaths 25

Constant in

D data
Write

D address

A address B address

A data B data

Register File

WR

DA

AA BA

Q D1
D0

S

RAM

ADRS
DATA
CS
WR

OUT

MW
+5V

A B

ALU

F
Z
N
C
V

FSFS

MD

S D1 D0
Q

Constant
MB

One last addition to our basic
datapath is a Constant input.
The revised datapath is shown
here, with a new multiplexer
and control signal MB.
We’ll see how this is used
later. Intuitively, it provides
an easy way to initialize a
register or memory location
with an arbitrary number.

July 22, 2003 Datapaths 26

Control units

From these examples, you can see that different
actions can be performed by providing different
inputs for the datapath control signals.
The two multiplexers MB and MD help us select
from one of several sources, just like the muxes
in the register transfer lecture last time.
The second question we had was “Who exactly
decides which registers are read and written,
and which ALU function is executed?”
— In real computers, datapath actions are

determined by the program that’s loaded
and running.

— A control unit is responsible for generating
the correct control signals for a datapath,
based on the program code.

We’ll talk about programs next week, and then
control units the week after that.

July 22, 2003 Datapaths 27

Summary

A processor’s basic job is to move data between registers, possibly with
some ALU computations.
We presented a register transfer language for describing computation and
movement of data between registers.
The datapath is the part of a processor where this is all done.
— The basic components are an ALU, a register file and some RAM.
— The ALU does all of the computations, while the register file and RAM

provide storage for the ALU’s operands and results.
Various control signals in the datapath determine its behavior.
Next we’ll see how programmers give commands to the processor, and
how those commands are translated in control signals for the datapath.

	Datapaths
	Keep it simple!
	A basic CPU model
	Register transfers
	Register transfer language
	Register transfer operations
	What’s inside the datapath?
	The all-important ALU
	ALU functions
	Register files
	Accessing the register file
	What’s inside the register file
	Explaining the register file
	My first datapath
	An example computation
	Two questions
	We can access RAM also
	Reading from RAM
	Notes about this setup
	Memory transfer notation
	Example sequence of operations
	R3 ? M[R0]
	R3 ? R3 + 1
	M[R0] ? R3
	Constant in
	Control units
	Summary

		hhuang@cs.uiuc.edu
	2003-07-22T01:21:15-0500
	Urbana, Illinois
	Howard Huang
	I am the author of this document

