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Floating-point arithmetic

Floating-point computations are vital to many applications. However, it’s
pretty hard to implement a floating-point system.
Today we’ll look at the IEEE 754 floating-point arithmetic standard.
— Floating-point numbers have their own binary representation.
— Rounding numbers is essential, but leads to roundoff errors.
— The standard includes some special values for special situations.

We’ll use the rest of the time for exam questions and answers.
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Floating-point representation

IEEE numbers are stored in a kind of scientific notation.

± fraction × 2exponent

We can represent floating-point numbers with three binary fields.

IEEE 754 defines two formats which differ only in the length of the fields.
— Single precision numbers have one sign bit, an 8-bit exponent, and a 

23-bit fraction, for a total of 32 bits. 
— Double precision numbers have a sign bit, an 11-bit exponent field and 

a 52-bit fraction field, for a total of 64 bits.
This is a simplified overview of the IEEE format; the representation of the 
fraction and exponent fields is fairly complex. 

fractionexponentsign
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Signed magnitude

IEEE numbers use a signed magnitude format.
This makes operations like multiplication fairly easy to implement.
— To multiply two numbers, first multiply their magnitudes.
— If the numbers have the same sign, the result is positive. Otherwise 

the result is negative.
However, one of the drawbacks we mentioned about signed magnitude is 
that there are two zeroes—a positive one and a negative one!
It turns out that 0–x and –x are not the same!

float x = 0.0;
printf( “%f\n”, 0.0-x );
printf( “%f\n”, -x    );

IEEE hardware and software have to take this into account.
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Finiteness

Most modern machines store data in 32-bit chunks. This is only enough to 
represent about 4 billion (232) different values.
— For signed integers, we can represent all the numbers between about 

–2 billion and +2 billion.
— But there are an infinite number of reals, and we can only represent 

some of the ones between roughly –2128 to +2128.
This limitation causes enormous headaches in doing arithmetic.
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Limits of the IEEE representation

Some integers simply cannot be represented in IEEE format.

int x   = 33554431;
float y = 33554431;
printf( "%d\n", x );
printf( "%f\n", y );

Some simple decimal numbers cannot be represented exactly in binary. 
Recall one of the questions from Homework 1, for example:

0.1010 = 0.0001100110011...2

In addition to overflow, now we have to worry about underflow, where 
the magnitude of a number is too small to represent. For example, what 
happens if we divide the smallest positive number, 2-126, by two?
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0.10

During the Gulf War in 1991, a U.S. Patriot missile failed to intercept an 
Iraqi Scud missile, and 28 Americans were killed.
A later study determined that the problem was caused by the inaccuracy 
of the binary representation of 0.10.
— The Patriot incremented a counter once every 0.10 seconds.
— It multiplied the counter value by 0.10 to compute the actual time.

However, the (24-bit) binary representation of 0.10 actually corresponds 
to 0.099999904632568359375, which is off by 0.000000095367431640625.
This doesn’t seem like much, but after 100 hours the time ends up being 
off by 0.34 seconds—enough time for a Scud to travel 500 meters!
Professor Skeel wrote a short article about this.

Roundoff Error and the Patriot Missile. SIAM News, 25(4):11, July 1992.

http://www.siam.org/siamnews/general/patriot.htm
http://www.siam.org/siamnews/general/patriot.htm


July 7, 2003 Floating-point arithmetic 7

Guarding against rounding errors

With a limited number of representable numbers, it’s very possible that 
some results will have to be rounded, and rounding errors will occur.
Seemingly small roundoff errors can quickly accumulate, especially with 
multiplications and exponentiations.
To help minimize rounding problems, IEEE 754 requires implementations 
to use guard digits—additional bits that increase the internal precision of 
operations.
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Extreme errors

Rounding errors in addition can still occur if one argument is significantly 
smaller than the other, since we can never have enough precision.
An extreme example is something like the following.

(1.5 x 1038) + (1.0 x 100) = 1.5 x 1038

The number 1.0 x 100 is much smaller than 1.5 x 1038, and it basically gets 
rounded out of existence.
This has some nasty implications. The order in which you do additions can 
affect the result, so (x + y) + z is not always the same as x + (y + z)!

float x = -1.5e38;
float y =  1.5e38;
printf( “%f\n”, (x + y) + 1.0 );
printf( “%f\n”, x + (y + 1.0) );
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Converting between precisions

Another loss-of-precision problem occurs when double-precision numbers 
are converted, or cast, to single precision.
In some languages like C the conversions occur automatically, which can 
yield some unexpected results.

float x = 3.0 / 7.0;
if ( x == 3.0 / 7.0 )

printf(“Equal\n”);
else

printf(“Not equal\n”);

Here 3.0⁄7.0 is a double-precision value that is automatically converted 
to single-precision format in the first line.
In the second line, “x” is converted back to double precision, but it is no 
longer equal to its original value.
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NaN

Sometimes it’s easier to continue a computation even if an error occurs.
A special “not a number” value NaN can represent undefined results such 
as 0/0 or the square root of a negative number.

printf( “%f\n”, 0.0/0.0 );

NaNs are propagated, so any operation on a NaN will also yield a NaN.
A NaN is never equal to anything—not even another NaN!

float x = 0.0 / 0.0;
if ( x == x )

printf(“Equal\n”);
else

printf(“Not equal\n”);
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Infinity

Infinity is defined as an alternative to overflow, which would otherwise
usually lead to an exception or the wrong answer.
Positive and negative infinities are included so the sign of the answer can 
be preserved, even if its magnitude can’t.
Here are some fun and interesting cases.

printf( “%f\n”,  0.0/0.0 ); /*  NaN */
printf( “%f\n”,  1.0/0.0 ); /*  Inf */
printf( “%f\n”, -1.0/0.0 ); /* -Inf */
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Summary

The IEEE 754 floating-point standard has lots of interesting features.
— Numbers can be represented in single precision or double precision.
— Guard bits help to increase internal precision.
— There are some special values like NaN and infinity.

Having a finite number of bits is a big problem because we have to throw 
a lot of arithmetic principles out the window.
— +0 is not the same as –0.
— 0–x is not the same as –x.
— (x + y) + z is not the same as x + (y + z).
— x is not always the same as x.

Implementing and programming floating-point correctly are both hard.
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