
July 1, 2003 ©2000-2003 Howard Huang 1

Subtraction

The arithmetic we did so far was limited to unsigned (positive) integers.
Today we’ll consider negative numbers and subtraction.
— The main problem is representing negative numbers in binary. We

introduce three methods, and show why one of them is the best.
— With negative numbers, we’ll be able to do subtraction using the

adders we made last time, because A – B = A + (–B).

July 1, 2003 Subtraction 2

Representations and algorithms

Today we’ll look at three different representations of signed numbers.
— The best one will result in the simplest and fastest operations.
— This is just like choosing a data structure in programming.

We’re mostly concerned with two particular operations.
1. Negating a signed number, or finding –x from x.
2. Adding two signed numbers, or computing x + y.

July 1, 2003 Subtraction 3

Signed magnitude representation

Humans use the signed-magnitude system. We add + or – to the front of a
number to indicate its sign.
We can do this in binary too, by adding a sign bit in front of our numbers.
— A 0 sign bit represents a positive number.
— A 1 sign bit represents a negative number.

11012 = 1310 (a 4-bit unsigned number)
0 1101 = +1310 (a positive number in 5-bit signed magnitude)
1 1101 = –1310 (a negative number in 5-bit signed magnitude)

01002 = 410 (a 4-bit unsigned number)
0 0100 = +410 (a positive number in 5-bit signed magnitude)
1 0100 = –410 (a negative number in 5-bit signed magnitude)

July 1, 2003 Subtraction 4

Signed magnitude operations

Negating a signed-magnitude number is trivial—just change the sign bit
from 0 to 1 or vice versa.
Adding numbers is difficult. Like grade-school addition, signed magnitude
addition is based on comparing the signs of the augend and addend.
— If they have the same sign, add the magnitudes and keep that sign.
— If they have different signs, then subtract the smaller magnitude from

the larger. The result has the same sign as the operand with the larger
magnitude.

This method of subtraction would lead to a rather complex circuit.

17135

862

973–

746

862–

746–+

973+
because

July 1, 2003 Subtraction 5

Ones’ complement representation

In a different representation, ones’ complement, we negate numbers by
complementing each bit of the number.
We keep the sign bits: 0 for positive numbers, and 1 for negative.
The sign bit is complemented along with the rest of the bits.

11012 = 1310 (a 4-bit unsigned number)
0 1101 = +1310 (a positive number in 5-bit ones’ complement)
1 0010 = –1310 (a negative number in 5-bit ones’ complement)

01002 = 410 (a 4-bit unsigned number)
0 0100 = +410 (a positive number in 5-bit ones’ complement)
1 1011 = –410 (a negative number in 5-bit ones’ complement)

July 1, 2003 Subtraction 6

Why is it called ones’ complement?

Complementing a single bit is equivalent to subtracting it from 1.

Similarly, complementing each bit of an n-bit number is equivalent to
subtracting that number from 2n–1.
For example, we can negate the 5-bit number 01101.
— Here n=5, and 25–1 = 111112.
— Subtracting 01101 from 11111 yields 10010.

001
110

1 – xx’x

01001

10110–

11111

July 1, 2003 Subtraction 7

Ones’ complement addition

There are two steps in adding ones’ complement numbers.
1. Do unsigned addition on the numbers, including the sign bits.
2. Take the carry out and add it to the sum.

This is simpler than signed magnitude addition, but still a bit tricky.

(+3)1100

1+
0100

01001

(–4)+1101+
(+7)1110

(+5)1010

0+
1010

10100

(+2)+0100+
(+3)1100

July 1, 2003 Subtraction 8

Two’s complement representation

Our final idea is two’s complement. To negate a number, we complement
each bit (just as for ones’ complement) and then add 1.

People often talk about “taking the two’s complement” of a number. This
is a confusing phrase, but it usually means to negate some number that’s
already in two’s complement format.

11012 = 1310 (a 4-bit unsigned number)
0 1101 = +1310 (a positive number in 5-bit two’s complement)
1 0010 = –1310 (a negative number in 5-bit ones’ complement)
1 0011 = –1310 (a negative number in 5-bit two’s complement)

01002 = 410 (a 4-bit unsigned number)
0 0100 = +410 (a positive number in 5-bit two’s complement)
1 1011 = –410 (a negative number in 5-bit ones’ complement)
1 1100 = –410 (a negative number in 5-bit two’s complement)

July 1, 2003 Subtraction 9

More about two’s complement

Another way to negate an n-bit two’s complement number is to subtract
it from 2n.

You can also complement all of the bits to the left of the rightmost 1.

01101 = +1310 (a positive number in two’s complement)
10011 = –1310 (a negative number in two’s complement)

00100 = +410 (a positive number in two’s complement)
11100 = –410 (a negative number in two’s complement)

(–1310)11001

(+1310)10110–
000001

(–410)00111

(+410)00100–
000001

July 1, 2003 Subtraction 10

Two’s complement addition

Negating a two’s complement number takes a bit of work, but addition is
much easier than with the other two systems.
To find A + B, you just have to do unsigned addition on A and B (including
their sign bits), and ignore any carry out.
For example, we can compute 0111 + 1100, or (+7) + (–4).
— First add 0111 + 1100 as unsigned numbers.

— Ignore the carry out (1). The answer is 0011 (+3).

11001

0011+
1110

July 1, 2003 Subtraction 11

Another two’s complement example

To further convince you that this works, let’s try adding two negative
numbers—1101 + 1110, or (–3) + (–2) in decimal.
Adding the numbers gives 11011.

Dropping the carry out (1) leaves us with the answer, 1011 (–5).

11011

0111+
1011

July 1, 2003 Subtraction 12

Two’s complement arithmetic is modular

Here are the 4-bit two’s
complement numbers
and their decimal values.
As with modular “clock”
arithmetic, let’s think of
subtraction as moving
counterclockwise around
the circle, and addition
as moving clockwise.

0000

0001

0010

0011

0100

0101

0110

01111000

1001

1010

1011

1100

1101

1110

1111

0
+1

+2

+3

+4

+5

+6
+7

–2

–4

–3

–1

–6

–8
–7

–5

July 1, 2003 Subtraction 13

Subtracting x…

For example, to subtract 6
from 1, go counterclockwise
six positions from 1.
You’ll find the answer is –5.

0000

0001

0010

0011

0100

0101

01101001

1010

1011

1100

1101

1110 0
+1

+2

+3

+4

+5

+6
+7

–2

–4

–3

–1

–6

–8
–7

–5

1111

1000 0111

July 1, 2003 Subtraction 14

…is equivalent to adding 16 – x

This is the same result you
would get if you added 10 to
1 instead!
Subtracting 6 is the same as
adding 10, which is why we
represent –6 as the unsigned
value 10.
In general, we can always
subtract x by adding 16 – x.

0000

0001

0010

0011

0100

0101

01101001

1010

1011

1100

1101

1110 0
+1

+2

+3

+4

+5

+6
+7

–2

–4

–3

–1

–6

–8
–7

–5

1111

1000 0111

July 1, 2003 Subtraction 15

An algebraic explanation

For n-bit numbers, the negation of B in two’s complement is 2n – B. (This
was one of the alternate ways of negating a two’s complement number.)

A – B = A + (–B)
= A + (2n – B)
= (A – B) + 2n

If A ≥ B, then (A – B) has to be positive, and the 2n represents a carry out
of 1. Discarding this carry out leaves us with the desired result, (A – B).
If A < B, then (A – B) must be negative, and 2n – (A – B) corresponds to the
correct result –(A – B) in two’s complement form.

July 1, 2003 Subtraction 16

Comparing the signed number systems

1000——–8
100110001111–7
101010011110–6
101110101101–5
110010111100–4
110111001011–3
111011011010–2
111111101001–1

—11111000–0

0000000000000
0001000100011
0010001000102
0011001100113
0100010001004
0101010101015
0110011001106
0111011101117

2C1CSMDecimalHere are all the 4-bit numbers in
the different systems.
Positive numbers are the same in
all three representations.
There are two ways to represent
0 in signed magnitude and ones’
complement. This makes things
more complicated.
In two’s complement, there is
one more negative number than
positive number. Here, we can
represent –8 but not +8.
However, two’s complement is
preferred because it has only one
0, and its addition algorithm is
the simplest.

July 1, 2003 Subtraction 17

Ranges of the signed number systems

How many negative and positive numbers can be represented in each of
the different four-bit systems on the previous page?

The ranges for general n-bit numbers (including the sign bit) are below.

0111 (+7)0111 (+7)0111 (+7)1111 (15)Largest

1000 (–8)1000 (–7)1111 (–7)0000 (0)Smallest

2C1CSMUnsigned

+(2n–1–1)+(2n–1–1)+(2n–1–1)2n–1Largest

–2n–1–(2n–1–1)–(2n–1–1)0Smallest

2C1CSMUnsigned

July 1, 2003 Subtraction 18

Representation example

Convert 110101 to decimal, assuming several different representations.

Since the sign bit is 1, this is a negative number. The easiest way to find
the magnitude is to negate it.

(a) signed magnitude format

Negating the original number, 110101, gives 010101, which is +21 in
decimal. So 110101 must represent –21.

(b) ones’ complement

Negating 110101 in ones’ complement yields 001010 = +1010, so the
original number must have been –1010.

(c) two’s complement

Negating 110101 in two’s complement gives 001011 = 1110, which
means 110101 = –1110.

The most important point is that a binary value has different meanings
depending on which number representation is assumed.

July 1, 2003 Subtraction 19

Making a subtraction circuit

Here is the four-bit unsigned addition circuit from last Wednesday.

We could build a subtraction circuit like this too.
An alternative solution is to re-use this unsigned adder by converting
subtraction operations into addition.
To subtract B from A, we can add the negation of B to A.

A – B = A + (–B)

July 1, 2003 Subtraction 20

A two’s complement subtraction circuit

Our circuit has to add A to the two’s complement negation of B.
— We can complement B by inverting the input bits B3 B2 B1 B0.
— We can add by setting the carry in to 1 instead of 0.

The sum is A + (B’ + 1), which is the two’s complement subtraction A – B.
Remember that A3, B3 and S3 here are actually sign bits.

July 1, 2003 Subtraction 21

Small differences

There are only two differences between an adder and subtractor circuit.
— The subtractor has to negate B3 B2 B1 B0.
— The subtractor sets the initial carry in to 1, instead of 0.

It’s not hard to make one circuit that does both addition and subtraction.

July 1, 2003 Subtraction 22

An adder-subtractor circuit

XOR gates let us selectively complement the B input.

X ⊕ 0 = X X ⊕ 1 = X’

When Sub = 0, the XOR gates output B3 B2 B1 B0 and the carry in is 0. The
adder output will be A + B + 0, or just A + B.
When Sub = 1, the XOR gates output B3’ B2’ B1’ B0’ and the carry in is 1.
Thus, the adder output will be a two’s complement subtraction, A – B.

July 1, 2003 Subtraction 23

Signed overflow

With 4-bit two’s complement numbers, the largest representable decimal
value is +7, and the smallest is –8.
What if you try to compute 4 + 5, or (–4) + (–5)?

Signed overflow is very different from unsigned overflow.
— The carry out is not enough to detect overflow. In the example on the

left, the carry out is 0 but there is overflow.
— Also, we cannot include the carry out to produce a five-digit result. In

the example on the right, (–4) + (–5) should not result in +23!

+ (+5)

(–7)

(+4)

10010

1010+
0010

+ (

(+7)

–5)
(–4)

11101

1101+
0011

July 1, 2003 Subtraction 24

Detecting signed overflow

The easiest way to detect signed overflow is to look at all the sign bits.

Overflow occurs only in the two situations above.
1. If you add two positive numbers and get a negative result.
2. If you add two negative numbers and get a positive result.

Overflow can never occur when you add a positive number to a negative
number. (Do you see why?)

+

(–7)

(+5)
(+4)

10010

1010+
0010

+

(+7)

(–5)
(–4)

11101

1101+
0011

July 1, 2003 Subtraction 25

Sign extension

Decimal numbers are assumed to have an infinite number of 0s in front of
them, which helps in “lining up” values for arithmetic operations.

You need to be careful in extending signed binary numbers, because the
leftmost bit is the sign and not part of the magnitude.
To extend a signed binary number, you have to replicate the sign bit. If
you just add 0s in front, you might accidentally change a negative number
into a positive one!
For example, consider going from 4-bit to 8-bit numbers.

(+5) 0101 0000 0101 (+5)
(–4) 1100 1111 1100 (–4)

132

600+
522

July 1, 2003 Subtraction 26

Summary

Data representations are all-important!
— A good representation for negative numbers can make subtraction

hardware much simpler to design.
— Using two’s complement, it’s easy to build a single circuit for both

addition and subtraction.
Working with signed numbers involves several issues.
— Signed overflow is very different from the unsigned overflow we

talked about last week.
— Sign extension is needed to properly “lengthen” negative numbers.

	Subtraction
	Representations and algorithms
	Signed magnitude representation
	Signed magnitude operations
	Ones’ complement representation
	Why is it called ones’ complement?
	Ones’ complement addition
	Two’s complement representation
	More about two’s complement
	Two’s complement addition
	Another two’s complement example
	Two’s complement arithmetic is modular
	Subtracting x…
	…is equivalent to adding 16 – x
	An algebraic explanation
	Comparing the signed number systems
	Ranges of the signed number systems
	Representation example
	Making a subtraction circuit
	A two’s complement subtraction circuit
	Small differences
	An adder-subtractor circuit
	Signed overflow
	Detecting signed overflow
	Sign extension
	Summary

		hhuang@cs.uiuc.edu
	2003-06-25T20:49:03-0500
	Urbana, Illinois
	Howard Huang
	I am the author of this document

