
April 28, 2003 ©2001-2003 Howard Huang 1

Cache writes and examples

Today is the last day of caches!
— One important topic we haven’t mentioned yet is writing to a cache. 

We’ll see several different scenarios and approaches.
— To introduce some more advanced cache designs, we’ll also present 

some of the caching strategies used in modern desktop processors like 
Pentiums and PowerPCs.

On Wednesday we’ll turn our attention to peripheral devices and I/O.



April 28, 2003 Cache writes and examples 2

Writing to a cache

Writing to a cache raises several additional issues.
First, let’s assume that the address we want to write to is already loaded 
in the cache. We’ll assume a simple direct-mapped cache.

If we write a new value to that address, we can store the new data in the 
cache, and avoid an expensive main memory access.

Index Tag DataV Address

...

110

...

1 11010 42803

Data

42803

...

1101 0110

...

Index Tag DataV Address

...

110

...

1 11010 21763

Data

42803

...

1101 0110

...

Mem[214] = 21763



April 28, 2003 Cache writes and examples 3

Inconsistent memory

But now the cache and memory contain different, inconsistent data! 
How can we ensure that subsequent loads will return the right value?
This is also problematic if other devices are sharing the main memory, as 
in a multiprocessor system.

Index Tag DataV Address

...

110

...

1 11010 21763

Data

42803

...

1101 0110

...



April 28, 2003 Cache writes and examples 4

Write-through caches

A write-through cache solves the inconsistency problem by forcing all 
writes to update both the cache and the main memory.

This is simple to implement and keeps the cache and memory consistent.
The bad thing is that forcing every write to go to main memory negates 
the advantage of having a cache—the whole point was to avoid accessing 
main memory!

Index Tag DataV Address

...

110

...

1 11010 21763

Data

21763

...

1101 0110

...

Mem[214] = 21763



April 28, 2003 Cache writes and examples 5

Write-back caches

In a write-back cache, the memory is not updated until the cache block 
needs to be replaced (e.g., when loading data into a full cache set).
For example, we might write some data to the cache at first, leaving it 
inconsistent with the main memory as shown before. 

Subsequent reads to the same memory address will be serviced by the 
cache, which contains the correct, updated data.

Index Tag DataV Address

...

110

...

1 11010 21763

Data

42803

1000 1110

1101 0110

...

Mem[214] = 21763

1225



April 28, 2003 Cache writes and examples 6

Finishing the write back

We don’t need to store the new value back to main memory unless the 
cache block gets replaced.
For example, on a read from Mem[142], which maps to the same cache 
block, the modified cache contents will first be written to main memory.

Only then can the cache block be replaced with data from address 142.

Index Tag DataV

...

110

...

1 11010 21763

Address Data

21763

1000 1110

1101 0110

...

1225

Index Tag DataV

...

110

...

1 10001 1225

Address Data

21763

1000 1110

1101 0110

...

1225



April 28, 2003 Cache writes and examples 7

Write-back cache discussion

Each block in a write-back cache needs a dirty bit to indicate whether or 
not it must be saved to main memory before being replaced—otherwise 
we might perform unnecessary writebacks.
Notice the penalty for the main memory access will not be applied until 
the execution of some subsequent instruction following the write.
— In our example, the write to Mem[214] affected only the cache.
— But the load from Mem[142] resulted in two memory accesses: one to 

save data to address 214, and one to load data from address 142.
— This makes it harder to predict execution time and performance.

The advantage of write-back caches is that not all write operations need 
to access main memory, as with write-through caches.
— If a single address is frequently written to, then it doesn’t pay to keep 

writing that data through to main memory.
— If several bytes within the same cache block are modified, they will 

only force one memory write operation at write-back time.



April 28, 2003 Cache writes and examples 8

Write misses

A second scenario is if we try to write to an address that is not already 
contained in the cache; this is called a write miss.
Let’s say we want to store 21763 into Mem[1101 0110] but we find that 
address is not currently in the cache.

When we update Mem[1101 0110], should we also load it into the cache?

Index Tag DataV Address

...

110

...

1 00010 123456

Data

6378

...

1101 0110

...



April 28, 2003 Cache writes and examples 9

Write around caches

With a write around policy, the write operation goes directly to main 
memory without affecting the cache.

This is good when data is written but not immediately used again, in 
which case there’s no point to load it into the cache yet.

for (int i = 0; i < SIZE; i++)
a[i] = i;

Index Tag DataV

...

110

...

1 00010 123456

Address Data

21763

...

1101 0110

...

Mem[214] = 21763



April 28, 2003 Cache writes and examples 10

Allocate on write

An allocate on write strategy would instead load the newly written data 
into the cache.

If that data is needed again soon, it will be available in the cache.

Index Tag DataV Address

...

110

...

1 11010 21763

Data

21763

...

1101 0110

...

Mem[214] = 21763



April 28, 2003 Cache writes and examples 11

Modern memory systems

We’ll finish up by describing the memory systems of some real CPUs.
— This will reinforce some of the ideas we’ve learned so far.
— You can also see some more advanced, more modern cache designs.

The book gives an example of the memory system in the MIPS R2000 CPU, 
which was popular in the early 90s.
We’ll highlight some of its more interesting features.
— There are separate caches for instructions and data.
— Each cache block is just one word wide.
— A write-through policy is implemented with a write buffer.



April 28, 2003 Cache writes and examples 12

Unified vs. split caches

The R2000 uses a split cache design.
— There is one 64KB cache for instructions and a separate 64KB cache 

for data.
— This makes sense when programs need to access both instructions and 

data in the same clock cycle—we used separate instruction and data 
memories in our single-cycle and pipelined datapaths too!

In contrast, a unified cache stores both program code and data.
— This is more flexible, because a value may be stored anywhere in the 

cache memory regardless of whether it’s an instruction or data.
— Unified caches normally lead to lower miss rates. As an example, the 

book shows that the miss rate of a unified cache for gcc is 4.8%, while 
the miss rate for a split cache turned out to be 5.4%.



April 28, 2003 Cache writes and examples 13

Block size

Each 64KB cache in the R2000 is divided into 16K one-word blocks.
— This doesn’t give the R2000 much chance to take advantage of spatial 

locality, as we mentioned last week.
— Figure 7.11 of the book shows how the miss rates could be reduced if 

the R2000 supported four-word blocks instead.

0%

1%

2%

3%

4%

5%

6%

M
is

s 
ra

te

gcc spice

Block size and miss rate

1-word blocks
4-word blocks



April 28, 2003 Cache writes and examples 14

Write buffers

The R2000 cache is write-through, so on write hits data goes to both the 
cache and the main memory.
This can result in slow writes, so the R2000 includes a write buffer, which 
queues pending writes to main memory and permits the CPU to continue. 

Buffers are commonly used when two devices run at different speeds.
— If a producer generates data too quickly for a consumer to handle, the 

extra data is stored in a buffer and the producer can continue on with 
other tasks, without waiting for the consumer.

— Conversely, if the producer slows down, the consumer can continue 
running at full speed as long as there is excess data in the buffer.

For us, the producer is the CPU and the consumer is the main memory.

BufferProducer Consumer



April 28, 2003 Cache writes and examples 15

Reducing memory stalls

Most newer CPUs include several features to reduce memory stalls.
— With a non-blocking cache, a processor that supports out-of-order 

execution can continue in spite of a cache miss. The cache might
process other cache hits, or queue other misses.

— A multiported cache allows multiple reads or writes per clock cycle, 
which is necessary for superscalar architectures that execute more 
than one instruction simultaneously. (A similar concept popped up in 
Homework 3.)

A less expensive alternative to multiporting is used by the Pentium Pro. 
— Cache memory is organized into several banks, and multiple accesses 

to different banks are permitted in the same clock cycle.
— We saw the same idea last week, in the context of main memory.



April 28, 2003 Cache writes and examples 16

Additional levels of caches

Last week we saw that high miss penalties and average memory access 
times are partially due to slow main memories.

AMAT = Hit time + (Miss rate × Miss penalty)

How about adding another level into the memory hierarchy?

Most processors include a secondary (L2) cache, which lies between the 
primary (L1) cache and main memory in location, capacity and speed. 

L1 cacheCPU Main
Memory

L2 cache



April 28, 2003 Cache writes and examples 17

Reducing the miss penalty

L1 cacheCPU Main
Memory

L2 cache

If the primary cache misses, we might be able to find the desired data in 
the L2 cache instead.
— If so, the data can be sent from the L2 cache to the CPU faster than it 

could be from main memory.
— Main memory is only accessed if the requested data is in neither the 

L1 nor the L2 cache.
The miss penalty is reduced whenever the L2 cache hits.



April 28, 2003 Cache writes and examples 18

Multi-level cache design

AMAT = Hit time + (Miss rate × Miss penalty)

Adding an L2 cache can lower the miss penalty, which means that the L1 
miss rate becomes less of a factor.
L1 and L2 caches may employ different organizations and policies. For 
instance, here is some information about the Pentium 4 data caches.

The secondary cache is usually much larger than the primary one, so L2 
cache blocks are typically bigger as well, and can take more advantage of 
spatial locality.

7 cycleswrite-back64 bytes8-way512 KBL2

2 cycleswrite-through64 bytes4-way8 KBL1

LatencyWrite policyBlock sizeAssociativityData sizeCache



April 28, 2003 Cache writes and examples 19

Extending the hierarchy even further

Main
Memory

Caches

CPU

Regs

Hard
Disk

The storage hierarchy can be extended quite a ways.
CPU registers can be considered as small one-word caches 
which hold frequently used data.
— However, registers must be controlled explicitly by the 

programmer, whereas caching is done automatically by 
the hardware.

Main memory can be thought of as a cache for a hard disk.
— Programs and data are both loaded into main memory 

before being executed or edited.
We could go even further, but the picture wouldn’t fit.
— Your hard drive may be a cache for networked 

information.
— Companies like Akamai provide mirrors or caches of 

other web sites.

http://www.akamai.com/


April 28, 2003 Cache writes and examples 20

Intel Pentium 4 caches

The Intel Pentium 4 has very small L1 caches.
— An execution trace cache holds about 12,000 micro-instructions. This 

avoids the cost of having to re-decode instructions (an expensive task 
for 8086-based processors) that are read from the cache.

— The primary data cache stores just 8KB.
Intel’s designers chose to minimize primary cache latency at the cost of a 
higher miss rate. So level 1 cache hits in the Pentium 4 are very fast, but 
there are more misses overall.
The 512KB secondary cache is eight-way associative, with 64-byte blocks.

7 cycleswrite-back64 bytes8-way512 KBL2

2 cycleswrite-through64 bytes4-way8 KBL1

LatencyWrite policyBlock sizeAssociativityData sizeCache

http://www.intel.com/products/desktop/processors/pentium4/


April 28, 2003 Cache writes and examples 21

Pentium 4 memory system

CPU

L1 cache

Main
Memory

L2 cache

256

64

The Pentium caches are connected by a 256-bit (32-byte) bus, so it takes 
two clock cycles to transfer a single 64-byte L1 cache block.
The Pentium caches are inclusive. The L1 caches contain a copy of data 
which is also in L2, and the L2 cache contains data that’s also in RAM.
— The same data may exist in all three levels of the hierarchy.
— The effective cache size is only 512KB, since the L1 caches are just a 

faster copy of data that’s also in L2.



April 28, 2003 Cache writes and examples 22

AMD Athlon XP caches

The AMD Athlon XP is an 8086-compatible processor with several features 
aimed at lowering miss rates.
The Athlon has a 128KB split level 1 cache with four-way associativity.
— This is roughly eight times larger than the Pentium 4’s L1 caches.
— As we saw last week, larger caches usually result in fewer misses.

The Athlon’s 512KB secondary cache also has some notable features.
— The higher 16-way associativity further minimizes the miss rate. 
— The L1 and L2 caches are exclusive—they never hold the same data. 

This makes the effective total cache size 640KB.

http://www.amd.com/us-en/Processors/ProductInformation/0,,30_118_3734,00.html


April 28, 2003 Cache writes and examples 23

Athlon XP memory system

The Athlon L1 and L2 caches are connected by a 64-bit bus, as compared 
to the wider 256-bit bus on the Pentiums.
— AMD claims their caches have a miss rate that’s low enough to offset 

the larger miss penalty.
— This illustrates another one of many architectural tradeoffs.

CPU

L1 cache

Main
Memory

L2 cache

64

64



April 28, 2003 Cache writes and examples 24

Motorola PowerPC G4

The Motorola PowerPC G4 has a 64KB, split primary cache with eight-way 
associativity.
The on-die 256KB 8-way L2 cache has a 256-bit interface to the L1, just 
like the Pentium 4.
The G4 also goes one step further with the memory hierarchy idea, by 
supporting an external Level 3 or L3 cache up to 2MB.
— The L3 cache data is not stored on the CPU itself, but the tags are. 

Thus, determining L3 cache hits is very fast.
— The L3 cache can also be configured as regular main memory, but 

with the advantage of being much faster.

http://e-www.motorola.com/webapp/sps/site/homepage.jsp?nodeId=03C1TR0467


April 28, 2003 Cache writes and examples 25

Caches and dies

As manufacturing technology improves, designers 
can squeeze more and more cache memory onto a 
processor die.
In the old Pentium III days the L2 cache wasn’t even 
on the same chip as the processor itself. Companies 
sold processor “modules” that were composed of 
several chips internally.
The second picture illustrates the size difference 
between an older Pentium 4 and a newer one. The 
newer one has an area of just 131 mm2!
The last picture shows the dies of an older Athlon 
with only 256KB of L2 cache, and a newer version 
with 512KB of L2 cache. You can literally see the 
doubling of the cache memory.

Tech Report

Tom’s Hardware

Hardware.fr

http://www.tomshardware.com/
http://www.tomshardware.com/
http://www.hardware.fr/
http://www.hardware.fr/


April 28, 2003 Cache writes and examples 26

CPU families

Manufacturers often sell a range of processors based on the same design.

In all cases, one of the main differences is the size of the caches.
— Low-end processors like the Duron and Celeron have only half as much

or less L2 cache memory than “standard” versions of the CPU.
— The high-end Opteron features a 1 MB secondary cache, and Xeons can 

be outfitted with up to 2 MB of level 3 cache.
This highlights the importance of caches and memory systems for overall 
performance.

Duron

Celeron

Budget

OpteronAthlon XPAMD

Xeon MPPentium 4Intel

High-endStandardCompany



April 28, 2003 Cache writes and examples 27

Summary

Writing to a cache poses a couple of interesting issues.
— Write-through and write-back policies keep the cache consistent with 

main memory in different ways for write hits.
— Write-around and allocate-on-write are two strategies to handle write 

misses, differing in whether updated data is loaded into the cache.
Modern processors include many advanced cache design ideas.
— Split caches can supply instructions and data in the same cycle.
— Non-blocking and multiport caches minimize memory stalls.
— Multilevel cache hierarchies can help reduce miss penalties.
— The speed and width of memory buses also affects performance.

Memory systems are a complex topic, and you should take CS333 to learn 
more about it! 


	Cache writes and examples
	Writing to a cache
	Inconsistent memory
	Write-through caches
	Write-back caches
	Finishing the write back
	Write-back cache discussion
	Write misses
	Write around caches
	Allocate on write
	Modern memory systems
	Unified vs. split caches
	Block size
	Write buffers
	Reducing memory stalls
	Additional levels of caches
	Reducing the miss penalty
	Multi-level cache design
	Extending the hierarchy even further
	Intel Pentium 4 caches
	Pentium 4 memory system
	AMD Athlon XP caches
	Athlon XP memory system
	Motorola PowerPC G4
	Caches and dies
	CPU families
	Summary

		hhuang@cs.uiuc.edu
	2003-08-22T02:31:08-0500
	Urbana, Illinois
	Howard Huang
	I am the author of this document




