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Cache performance

Caches take advantage of locality to speed up most data accesses.
— Increasing the block size can take advantage of spatial locality.
— Increasing cache associativity helps reduce the miss rate.

Today we’ll finish up with associativity and do two more things.
— We’ll try to quantify the benefits of different cache designs, and see 

how caches affect overall performance.
— We’ll also investigate some main memory organizations that can help 

increase memory system performance. 
Next Monday we’ll introduce some of the issues involved with writing to 
caches, and talk about cache configurations in modern processors.
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Hits and misses

To examine the performance of a memory system, we 
need to focus on a couple of important factors.
— How long does it take to send data from the cache 

to the CPU?
— How long does it take to copy data from memory 

into the cache?
— How often do we have to access main memory?

There are names for all of these variables.
— The hit time is how long it takes data to be sent 

from the cache to the processor. This is usually 
fast, on the order of 1-3 clock cycles.

— The miss penalty is the time to copy data from 
main memory to the cache. This often requires 
dozens of clock cycles.

— The miss rate is the percentage of misses.
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CPU
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Average memory access time

The average memory access time, or AMAT, can then be computed.

AMAT = Hit time + (Miss rate × Miss penalty)

This is just averaging the amount of time for cache hits and the amount 
of time for cache misses.
How can we improve the average memory access time of a system?
— Obviously, a lower AMAT is better.
— Miss penalties are always much greater than hit times, so the best way 

to lower AMAT is to reduce the miss penalty or the miss rate.
However, AMAT should only be used a general guideline. Remember that 
execution time is still the best performance metric.
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Memory and overall performance

How do cache hits and misses affect overall system performance?
— Assuming a hit time of one CPU clock cycle, program execution will 

continue normally on a cache hit. (Our earlier computations always 
assumed one clock cycle for an instruction fetch or data access.)

— For cache misses, we’ll assume the CPU must stall to wait for a load 
from main memory.

The total number of stall cycles depends on the number of cache misses 
and the miss penalty.

Memory stall cycles = Memory accesses × miss rate × miss penalty

To include stalls due to cache misses in CPU performance equations, we 
have to add them to the “base” number of execution cycles.

CPU time = (CPU execution cycles + Memory stall cycles) × Cycle time
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Performance example

Assume that 33% of the instructions in a program are data accesses. The 
cache hit ratio is 97% and the hit time is one cycle, but the miss penalty 
is 20 cycles.
If the cache was perfect and never missed, the AMAT would be one cycle. 
But even with just a 3% miss rate, the AMAT here increases 1.6 times!

AMAT = Hit time + (Miss rate × Miss penalty)
= 1 cycle + (3% × 20 cycles)
= 1.6 cycles

What about the overall performance? If I instructions are executed, then 
the number of wasted cycles will be 0.2 × I.

Memory stall cycles = Memory accesses × Miss rate × Miss penalty
= 0.33 I × 0.03 × 20 cycles
= 0.2 I cycles

This code is 1.2 times slower than a program with a “perfect” CPI of 1!
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Memory systems are a bottleneck

CPU time = (CPU execution cycles + Memory stall cycles) × Cycle time

Processor performance traditionally outpaces memory performance, so 
the memory system is often the system bottleneck.
For example, with a base CPI of 1, the CPU time from the last page is:

CPU time = (I + 0.2 I) × Cycle time

What if we could double the CPU performance so the CPI becomes 0.5, 
but memory performance remained the same?

CPU time = (0.5 I + 0.2 I) × Cycle time

The overall CPU time improves by just 1.2/0.7 = 1.7 times!
Refer back to Amdahl’s Law from Homework 2, and textbook page 101.
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Improving memory (and overall) performance 

Memory stall cycles = Memory accesses × Miss rate × Miss penalty

You can decrease the number of stall cycles by reducing any or all of the 
individual factors.
— Telling programmers to load and store less doesn’t usually work!
— It’s probably easier to to reduce the miss rate or the miss penalty.

There are many methods for reducing the miss rate.
— Using an associative cache can help reduce conflicts.
— Making the cache bigger lets us store more stuff in it.
— Adjusting the block size can take advantage of spatial locality.

Later today we’ll see some ways to reduce the miss penalty as well.
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Comparing cache organizations

Like many architectural features, caches are evaluated experimentally.
— As always, performance depends on the actual instruction mix, since 

different programs will have different memory access patterns.
— Simulating or executing real applications is the most accurate way to 

measure performance characteristics.
The graphs on the next few slides illustrate the simulated miss rates for 
several different cache designs.
— Again lower miss rates are generally better, but remember that the 

miss rate is just one component of average memory access time and 
execution time.

— You’ll probably do some cache simulations if you take CS333.
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Associativity tradeoffs and miss rates

As we saw last time, higher associativity means more complex hardware.
But a highly-associative cache will also exhibit a lower miss rate.
— Each set has more blocks, so there’s less chance of a conflict between 

two addresses which both belong in the same set.
— Overall, this will reduce AMAT and memory stall cycles.

Figure 7.29 on p. 604 of the textbook shows the miss rates decreasing as 
the associativity increases.
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Cache size and miss rates

The cache size also has a significant impact on performance.
— The larger a cache is, the less chance there will be of a conflict.
— Again this means the miss rate decreases, so the AMAT and number of 

memory stall cycles also decrease.
The complete Figure 7.29 depicts the miss rate as a function of both the 
cache size and its associativity.
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Block size and miss rates

Finally, Figure 7.12 on p. 559 shows miss rates relative to the block size 
and overall cache size.
— Smaller blocks do not take maximum advantage of spatial locality.
— But if blocks are too large, there will be fewer blocks available, and 

more potential misses due to conflicts.
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Basic main memory design

There are some ways the main memory can be organized to reduce miss 
penalties and help with caching.
For some concrete examples, let’s assume the following
three steps are taken when a cache needs to load data
from the main memory.

1. It takes 1 cycle to send an address to the RAM.
2. There is a 15-cycle latency for each RAM access.
3. It takes 1 cycle to return data from the RAM.

In the setup shown here, the buses from the CPU to the
cache and from the cache to RAM are all one byte wide.
If the cache has one-byte blocks, then filling a block
from RAM (i.e., the miss penalty) would take 17 cycles.

1 + 15 + 1 = 17 clock cycles

The cache controller has to send the desired address to
the RAM, wait and receive the data.
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Miss penalties for larger cache blocks

If the cache has four-byte blocks, then loading a single block would need 
four individual main memory accesses, and a miss penalty of 68 cycles!

4 × (1 + 15 + 1) = 68 clock cycles
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A wider memory

A simple way to decrease the miss 
penalty is to widen the memory and 
its interface to the cache, so we can 
read multiple bytes from RAM in one 
shot.
If we could read four bytes from the 
memory at once, a four-byte cache 
load would need just 17 cycles.

1 + 15 + 1 = 17 cycles

The disadvantage is the cost of the 
wider buses—each additional bit of 
memory width requires another 
connection to the cache.
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An interleaved memory

Another approach is to interleave
the memory, or split it into “banks” 
that can be accessed individually.
The main benefit is overlapping the 
latencies of accessing each word.
For example, if our main memory 
has four banks, each one byte wide, 
then we could load four bytes into 
a cache block in just 20 cycles.

1 + 15 + (4 × 1) = 20 cycles

Our buses are still one byte wide 
here, so four cycles are needed to 
transfer data to the caches.
This is cheaper than implementing 
a four-byte bus, but not too much 
slower.
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Interleaved memory accesses

Load word 1
Load word 2
Load word 3
Load word 4

Clock cycles
15 cycles

Here is a diagram to show how the memory accesses can be interleaved.
— The magenta cycles represent sending an address to a memory bank.
— Each memory bank has a 15-cycle latency, and it takes another cycle 

(shown in blue) to return data from the memory.
This is the same basic idea as pipelining!
— As soon as we request data from one memory bank, we can go ahead

and request data from another bank as well.
— Each individual load takes 17 clock cycles, but four overlapped loads 

require just 20 cycles.
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Summary

Memory system performance depends upon the cache hit time, miss rate
and miss penalty, as well as the actual program being executed.
— We can use these numbers to find the average memory access time. 
— We can also revise our CPU time formula to include stall cycles.

AMAT = Hit time + (Miss rate × Miss penalty)

Memory stall cycles = Memory accesses × miss rate × miss penalty

CPU time = (CPU execution cycles + Memory stall cycles) × Cycle time

The organization of a memory system affects its performance.
— The cache size, block size, and associativity affect the miss rate.
— We can organize the main memory to help reduce miss penalties. For 

example, interleaved memory supports pipelined data accesses.
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