
April 21, 2003 ©2001-2003 Howard Huang 1

More cache organizations

We want to store a copy of our most frequently used data in a small, fast
cache memory, so we can speed up most data reads and writes.
— Normal programs exhibit temporal and spatial locality, which makes it

easier to guess what data will be “most frequently used.”
— Last week we showed a basic direct-mapped cache, and discussed the

need for additional tag and valid bits.
Today we’ll explore some more complex cache organizations.
— How can we take advantage of spatial locality too?
— How can we reduce the number of potential conflicts?

April 21, 2003 More cache organizations 2

Four important questions

1. When we copy a block of data from main memory to
the cache, where exactly should we put it?

2. How can we tell if a word is already in the cache, or if
it has to be fetched from main memory first?

3. Eventually, the small cache memory might fill up. To
load a new block from main RAM, we’d have to replace
one of the existing blocks in the cache... which one?

4. How can write operations be handled by the memory
system?

Questions 1 and 2 are related—we have to know where the data is placed
if we ever hope to find it again later!

April 21, 2003 More cache organizations 3

Direct-mapped caches

Last time we introduced caches with direct mapping, where the main
memory address determines which cache block stores the data.
If the cache contains 2k

blocks, then data from
address i would be stored
in block i mod 2k.
Equivalently, you can look
at the lowest k bits of the
memory address.
For example, data from
memory address 11 maps
to cache block 3 on the
right, since 11 mod 4 = 3
and since the lowest two
bits of 1011 are 11.

0
1
2
3

Index

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Memory
Address

April 21, 2003 More cache organizations 4

Tags

To find data stored in the cache, we need to add tags to distinguish
between different memory locations that map to the same cache block.
Below, you can see that data from memory address 7 (0111) is stored in
cache block 3, as opposed to data from addresses 3, 11 or 15.

00
01
10
11

Index

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Tag Data
00
11
01
01

April 21, 2003 More cache organizations 5

Spatial locality

One-byte cache blocks don’t take advantage of spatial locality, which
predicts that an access to one address will be followed by an access to a
nearby address.
What we can do
is make the cache
block size larger
than one byte.
Here we use two-
byte blocks, so
we can load the
cache with two
bytes at a time.
If we read from
address 12, the
data in addresses
12 and 13 would
both be copied to
cache block 2.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Memory
Address

0
1
2
3

Index

April 21, 2003 More cache organizations 6

Block addresses

Now how can we figure out where data should be placed in the cache?
It’s time for block addresses! If the cache block size is 2n bytes, we can
conceptually split the main memory into 2n-byte chunks too.
To determine the block address of a byte
address i, you can do the integer division

i ⁄ 2n

Our example has two-byte cache blocks, so
we can think of a 16-byte main memory as
an “8-block” main memory instead.
For instance, memory addresses 12 and 13
both correspond to block address 6, since
12 / 2 = 6 and 13 / 2 = 6.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Byte
Address

0

1

2

3

4

5

6

7

Block
Address

April 21, 2003 More cache organizations 7

Cache mapping

Once you know the block address, you can map it to the cache as before:
find the remainder when the block address is divided by the number of
cache blocks.
In our example,
memory block 6
belongs in cache
block 2, since
6 mod 4 = 2.
This corresponds
to placing data
from memory
byte addresses
12 and 13 into
cache block 2.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Byte
Address

0
1
2
3

Index

0

1

2

3

4

5

6

7

Block
Address

April 21, 2003 More cache organizations 8

Data placement within a block

When we access one byte of data in memory, we’ll copy its entire block
into the cache, to hopefully take advantage of spatial locality.
In our example, if a program reads from byte address 12 we’ll load all of
memory block 6 (both addresses 12 and 13) into cache block 2.
Note byte address 13 corresponds to the same memory block address! So
a read from address 13 will also cause memory block 6 (addresses 12 and
13) to be loaded into cache block 2.
To make things simpler, byte i of a memory block is always stored in byte
i of the corresponding cache block.

12
13

Byte
Address

2

Cache
BlockByte 1Byte 0

April 21, 2003 More cache organizations 9

Locating data in the cache

Let’s say we have a cache with 2k blocks, each containing 2n bytes.
We can determine where a byte of data belongs in this cache by looking
at its address in main memory.
— k bits of the address will select one of the 2k cache blocks.
— The lowest n bits are now a block offset that decides which of the 2n

bytes in the cache block will store the data.

Our example used a 22-block cache with 21 bytes per block. Thus, memory
address 13 (1101) would be stored in byte 1 of cache block 2.

m-bit Address

k bits(m-k-n) bits
n-bit Block

OffsetTag Index

4-bit Address

2 bits1 bit
1-bit Block

Offset1 10 1

April 21, 2003 More cache organizations 10

A picture

1

0
1
2
3

Index Tag DataValid

Address (4 bits)

=

Hit

2

Block offset

Mux

Data

8 8

8

1 10

Tag Index (2 bits)

April 21, 2003 More cache organizations 11

Using arithmetic

An equivalent way to find the right location within the cache is to use
arithmetic again.

We can find the index in two steps, as outlined earlier.
— Do integer division of the address by 2n to find the block address.
— Then mod the block address with 2k to find the index.

The block offset is just the memory address mod 2n.
For example, we can find address 13 in a 4-block, 2-byte per block cache.
— The block address is 13 / 2 = 6, so the index is then 6 mod 4 = 2.
— The block offset would be 13 mod 2 = 1.

m-bit Address

k bits(m-k-n) bits
n-bit Block

OffsetTag Index

April 21, 2003 More cache organizations 12

A diagram of a larger example cache

Here is a cache with 1,024
blocks of 4 bytes each, and
32-bit memory addresses.

0
1
2
3
...
...

1022
1023

Index Tag DataValid

Address (32 bits)

=

Hit

1020

Tag

2 bits

Mux

Data

8 8 8 8

8

April 21, 2003 More cache organizations 13

A larger example cache mapping

Where would the byte from memory address 6146 be stored in this direct-
mapped 210-block cache with 22-byte blocks?
We can determine this with the binary force.
— 6146 in binary is 00...01 1000 0000 00 10.
— The lowest 2 bits, 10, mean this is the second byte in its block.
— The next 10 bits, 1000000000, are the block number itself (512).

Equivalently, you could use your arithmetic mojo instead.
— The block offset is 6146 mod 4, which equals 2.
— The block address is 6146/4 = 1536, so the index is 1536 mod 1024, or

512.

April 21, 2003 More cache organizations 14

A larger diagram of a larger example cache mapping

10

0
1
2
...
512
...

1022
1023

Index Tag DataValid

Address (32 bits)

=

Hit

1020

Tag

2 bits

Mux

Data

8 8 8 8

8

0000 0001 1000000000

April 21, 2003 More cache organizations 15

What goes in the rest of that cache block?

The other three bytes of that cache block come from the same memory
block, whose addresses must all have the same index (1000000000) and
the same tag (00...01).

10

...
512
...

Index Tag DataValid

Address (32 bits)

=

Hit

1020

Tag

Mux

Data

8 8 8 8

8

0000 0001 1000000000

April 21, 2003 More cache organizations 16

The rest of that cache block

Again, byte i of a memory block is stored into byte i of the corresponding
cache block.
— In our example, memory block 1536 consists of byte addresses 6144 to

6147. So bytes 0-3 of the cache block would contain data from address
6144, 6145, 6146 and 6147 respectively.

— You can also look at the lowest 2 bits of the memory address to find
the block offsets.

Block offset Memory address Decimal
00 00..01 1000000000 00 6144
01 00..01 1000000000 01 6145
10 00..01 1000000000 10 6146
11 00..01 1000000000 11 6147

...
512
...

Index Tag DataValid

April 21, 2003 More cache organizations 17

Disadvantage of direct mapping

The direct-mapped cache is easy: indices and offsets can be computed
with bit operators or simple arithmetic, because each memory address
belongs in exactly one block.
However, this isn’t really
flexible. If a program uses
addresses 2, 6, 2, 6, 2, ...,
then each access will result
in a cache miss and a load
into cache block 2.
This cache has four blocks,
but direct mapping might
not let us use all of them.
This can result in more
misses than we might like.

00
01
10
11

Index

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory
Address

April 21, 2003 More cache organizations 18

A fully associative cache

A fully associative cache permits data to be stored in any cache block,
instead of forcing each memory address into one particular block.
— When data is fetched from memory, it can be placed in any unused

block of the cache.
— This way we’ll never have a conflict between two or more memory

addresses which map to a single cache block.
In the previous example, we might put memory address 2 in cache block
2, and address 6 in block 3. Then subsequent repeated accesses to 2 and
6 would all be hits instead of misses.
If all the blocks are already in use, it’s usually best to replace the least
recently used one, assuming that if it hasn’t used it in a while, it won’t
be needed again anytime soon.

April 21, 2003 More cache organizations 19

The price of full associativity

However, a fully associative cache is expensive to implement.
— Because there is no index field in the address anymore, the entire

address must be used as the tag, increasing the total cache size.
— Data could be anywhere in the cache, so we must check the tag of

every cache block. That’s a lot of comparators!

...

...

...

Index Tag (32 bits) DataValid Address (32 bits)

=

Hit

32

Tag

=

=

April 21, 2003 More cache organizations 20

Set associativity

An intermediate possibility is a set-associative cache.
— The cache is divided into groups of blocks, called sets.
— Each memory address maps to exactly one set in the cache, but data

may be placed in any block within that set.
If each set has 2x blocks, the cache is an 2x-way associative cache.
Here are several possible organizations of an eight-block cache.

0
1
2
3
4
5
6
7

Set

0

1

2

3

Set

0

1

Set

1-way associativity
8 sets, 1 block each

2-way associativity
4 sets, 2 blocks each

4-way associativity
2 sets, 4 blocks each

April 21, 2003 More cache organizations 21

Locating a set associative block

We can determine where a memory address belongs in an associative
cache in a similar way as before.
If a cache has 2s sets and each block has 2n bytes, the memory address
can be partitioned as follows.

Our arithmetic computations now compute a set index, to select a set
within the cache instead of an individual block.

Block Offset = Memory Address mod 2n

Block Address = Memory Address / 2n

Set Index = Block Address mod 2s

Address (m bits)

s(m-s-n) n

Tag Index Block
offset

April 21, 2003 More cache organizations 22

Example placement in set-associative caches

Where would data from memory byte address 6195 be placed, assuming
the eight-block cache designs below, with 16 bytes per block?
6195 in binary is 00...0110000 011 0011.
Each block has 16 bytes, so the lowest 4 bits are the block offset.
For the 1-way cache, the next three bits (011) are the set index.
For the 2-way cache, the next two bits (11) are the set index.
For the 4-way cache, the next one bit (1) is the set index.
The data may go in any block, shown in green, within the correct set.

0
1
2
3
4
5
6
7

Set

0

1

2

3

Set

0

1

Set

1-way associativity
8 sets, 1 block each

2-way associativity
4 sets, 2 blocks each

4-way associativity
2 sets, 4 blocks each

April 21, 2003 More cache organizations 23

Block replacement

Any empty block in the correct set may be used for storing data.
If there are no empty blocks, the cache controller will attempt to replace
the least recently used block, just like before.
It’s difficult to keep track of what’s really the least recently used block,
so some approximations are used. We won’t get into the details.

0
1
2
3
4
5
6
7

Set

0

1

2

3

Set

0

1

Set

1-way associativity
8 sets, 1 block each

2-way associativity
4 sets, 2 blocks each

4-way associativity
2 sets, 4 blocks each

April 21, 2003 More cache organizations 24

Set associative caches are a general idea

By now you may have noticed the 1-way set associative cache is the same
as a direct-mapped cache.
Similarly, if a cache has 2k blocks, a 2k-way set associative cache would
be the same as a fully-associative cache.

0
1
2
3
4
5
6
7

Set

0

1

2

3

Set

0

1

Set

1-way
8 sets,

1 block each

2-way
4 sets,

2 blocks each

4-way
2 sets,

4 blocks each

0

Set

8-way
1 set,

8 blocks

direct mapped fully associative

April 21, 2003 More cache organizations 25

2-way set associative cache implementation

0
...
2k

Index Tag DataValid

Address (m bits)

=

Hit

k(m-k-n)

Tag

2-to-1 mux

Data

2n

TagValid Data

2n

2n

=

Index Block
offset

How does an implementation of a
2-way cache compare with that of
a fully-associative cache?

Only two comparators are
needed.
The cache tags are a little
shorter too.

April 21, 2003 More cache organizations 26

Summary

Larger block sizes can take advantage of spatial locality by loading data
from not just one address, but also nearby addresses, into the cache.
Associative caches assign each memory address to a particular set within
the cache, but not to any specific block within that set.
— Set sizes range from 1 (direct-mapped) to 2k (fully associative).
— Larger sets and higher associativity lead to fewer cache conflicts and

lower miss rates, but they also increase the hardware cost.
— In practice, 2-way through 16-way set-associative caches strike a good

balance between lower miss rates and higher costs.
On Wednesday we’ll talk about measuring cache performance, and also
discuss the complex issue of writing data to a cache.

	More cache organizations
	Four important questions
	Direct-mapped caches
	Tags
	Spatial locality
	Block addresses
	Cache mapping
	Data placement within a block
	Locating data in the cache
	A picture
	Using arithmetic
	A diagram of a larger example cache
	A larger example cache mapping
	A larger diagram of a larger example cache mapping
	What goes in the rest of that cache block?
	The rest of that cache block
	Disadvantage of direct mapping
	A fully associative cache
	The price of full associativity
	Set associativity
	Locating a set associative block
	Example placement in set-associative caches
	Block replacement
	Set associative caches are a general idea
	2-way set associative cache implementation
	Summary

		hhuang@cs.uiuc.edu
	2003-08-22T02:30:21-0500
	Urbana, Illinois
	Howard Huang
	I am the author of this document

