
April 9, 2003 ©2001-2003 Howard Huang 1

Advanced processor designs

We’ve only scratched the surface of CPU design.
Today we’ll briefly introduce some of the big ideas and big words behind
modern processors by looking at two example CPUs.
— The Motorola PowerPC, used in Apple computers and many embedded

systems, is a good example of state-of-the-art RISC technologies.
— The Intel Itanium is a more radical design intended for the higher-end

systems market.

http://www.motorola.com/PowerPC/
http://www.motorola.com/PowerPC/
http://www.intel.com/products/server/processors/server/itanium2/

April 9, 2003 Advanced processor designs 2

General ways to make CPUs faster

You can improve the chip manufacturing technology.
— Smaller CPUs can run at a higher clock rates, since electrons have to

travel a shorter distance. Newer chips use a “0.13µm process,” and
this will soon shrink down to 0.09µm.

— Using different materials, such as copper instead of aluminum, can
improve conductivity and also make things faster.

You can also improve your CPU design, like we’ve been doing in CS232.
— One of the most important ideas is parallel computation—executing

several parts of a program at the same time.
— Being able to execute more instructions at a time results in a higher

instruction throughput, and a faster execution time.

April 9, 2003 Advanced processor designs 3

Pipelining is parallelism

We’ve already seen parallelism in detail! A pipelined processor executes
many instructions at the same time.
All modern processors use pipelining, because most programs will execute
faster on a pipelined CPU without any programmer intervention.
Today we’ll discuss some more advanced techniques to help you get the
most out of your pipeline.

April 9, 2003 Advanced processor designs 4

Motivation for some advanced ideas

Our pipelined datapath only supports integer operations, and we assumed
the ALU had about a 2ns delay.

How can we add floating-point operations, which are roughly three times
slower than integer operations, to the processor?

The longer floating-point delay would affect the cycle time adversely. In
this example, the EX stage would need 6 ns, and the clock rate would be
limited to about 166MHz.

DMReg RegIM

2 ns

DMReg RegIM

6 ns

April 9, 2003 Advanced processor designs 5

Deeper pipelines

We could pipeline the floating-point unit too! We might split an addition
into 3 stages for equalizing exponents, adding mantissas, and rounding.

A floating-point operation would still take 6ns total, but the stage length
and cycle time can be reduced, and we can also overlap the execution of
several floating-point instructions.

The homeworks already mentioned how the Pentium 4 uses a 20-stage
pipeline, breaking an instruction execution into 20 steps—that’s one of
the reasons the P4 has such high clock rates.

WBMEMFEX3FEX2FEX1IDIF

WBMEMFEX3FEX2FEX1IDIF

WBMEMFEX3FEX2FEX1IDIF

WBMEMFEX3FEX2FEX1IDIF

April 9, 2003 Advanced processor designs 6

Superscalar architectures

What if we include both an integer ALU and a floating-point unit in the
datapath?

This is almost like having two pipelines!
A superscalar processor can start, or dispatch, more than one instruction
on every clock cycle.

FEX3FEX2FEX1

IDIF WBMEM

EX

April 9, 2003 Advanced processor designs 7

Instruction memory contention

One difficulty with superscalar designs are structural hazards that occur
when many instructions need to use the same functional units.
For example, to execute two instructions in one cycle, the memory must
be able to fetch two instructions at once.

Read
address

Instruction
memory

Instruction 1
Instruction 2

April 9, 2003 Advanced processor designs 8

Register file contention

Executing one integer and one floating-point instruction together would
also require reading up to four register source operands, and writing up
to two register destinations.

add $s0, $s1, $s2
fadd $t0, $t1, $t2

We could add more read and write ports to the register file, as we did for
one of the homework questions.

Read 1
Read 2
Read 3
Read 4

Write reg 1
Write data 1

Data 1
Data 2
Data 3
Data 4

Registers

RegWrite1

Write reg 2
Write data 2

RegWrite2

April 9, 2003 Advanced processor designs 9

Separate register files

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Integer
Registers

IntRegWrite

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

FP
Registers

FPRegWrite

A common alternative is to provide two register files, one for the integer
unit and one for the floating-point unit.
— Most programs do not mix integer and FP operands.
— Double and extended precision IEEE numbers are 64 or 80-bits long, so

they wouldn’t fit in normal 32-bit registers anyway.
— Explicit “casting” instructions can be used to move data between the

register files when necessary.
We saw this in the MIPS floating-point architecture too.

April 9, 2003 Advanced processor designs 10

PowerPC introduction

The PowerPC project was started in 1991 by Apple, IBM and Motorola.
— The basis was IBM’s existing POWER architecture, a RISC-based design

used in older IBM RS/6000 workstations.
— The first actual PowerPC processor was introduced in 1993.
— The G4 is the most current version, which runs at up to 1.42 GHz in

Apple’s Power Macintosh G4 computers.
PowerPCs are noted for very low power usage: 20-30W for a 1 GHz G4,
compared to 60W or more for newer Pentiums and Athlons.
— Low power is especially good for laptops, which run on batteries.
— It also helps keep desktop machines cool without fans.

April 9, 2003 Advanced processor designs 11

G4 superscalar architecture

The PowerPC G4 has a total of eleven pipelined execution units.
— There are four ALUs and one FPU for basic arithmetic operations.
— A separate load/store unit manages memory accesses.
— The AltiVec units support multimedia instructions (like MMX/SSE).

The G4 is a four-way superscalar processor—the decoder can dispatch up
to three instructions per cycle, as well as handle a branch instruction.

FPU Load/
Store

Decode/
Branch

Instr
Fetch

Integer
ALUs

AltiVec
Units

April 9, 2003 Advanced processor designs 12

Stalls are even more dangerous here

WBMEMEXIDIF

WBMEMEXIDIF

WBMEMEXIDIF

Remember that stalls delay all subsequent instructions in the pipeline.

Stalls are especially undesirable in a superscalar CPU because there could
be several functional units sitting around doing nothing.
— Below, when the integer ALU stalls the FPU must also remain idle.
— The more functional units we have, the worse the problem.

WBMEMFEX3FEX2FEX1IDIF

WBMEMEXIDIF

WBMEMEXIDIF

April 9, 2003 Advanced processor designs 13

Dynamic pipelining

One solution is to give each execution unit a reservation station, which
holds an instruction until all of its operands become available, either
from the register file or forwarding units.
The instruction decoder dispatches
instruction to the reservation station
of the appropriate execution unit.
Stalls will only affect a single
execution unit; the decoder
can continue
dispatching
subsequent
instructions to
other execution
units.

FPU Load/
Store

Decode/
Branch

Instr
Fetch

Integer
ALUs

AltiVec
Units

Reservation
stations

Reservation
station

Reservation
station

Reservation
stations

April 9, 2003 Advanced processor designs 14

Out-of-order execution

If stalls only affect a single hardware element, the decoder can continue
dispatching subsequent instructions to other execution units.

But then a later instruction could finish executing before an earlier one!

lw $t0, 4($sp)
mul $t0, $t0, $t0
add $t0, $s2, $s3

This can be troublesome for writing the correct destination registers as
here, and for handling precise interrupts.

WBMEMFEX3FEX2FEX1IDIF

WBMEMEXIDIF

WBMEMEXIDIF

April 9, 2003 Advanced processor designs 15

Reordering

To prevent problems from out-of-order execution, instructions should not
save their results to registers or memory immediately.
Instead, instructions are sent to a commit unit after they finish their EX
stage, along with a flag indicating whether or not an exception occurred.
The commit unit ensures that instruction results are stored in the correct
order, so later instructions will be held until earlier instructions finish.
— Register writes, like on the last page, are handled correctly.
— The flag helps implement precise exceptions. All instructions before

the erroneous one will be committed, while any instructions after it
will be flushed.

— The commit unit also flushes instructions from mispredicted branches.
The G4 can commit up to six instructions per cycle.

April 9, 2003 Advanced processor designs 16

G4 block diagram

FPU Load/
Store

Decode/
Branch

Instr
Fetch

Integer
ALUs

AltiVec
Units

Reservation
stations

Reservation
station

Reservation
station

Reservation
stations

Commit unit

April 9, 2003 Advanced processor designs 17

G4 summary

The G4 achieves parallelism via both pipelining and a superscalar design.
— There are eleven functional units, and up to four instructions can be

dispatched per cycle.
— A stall will only affect one of the functional units.
— A commit buffer is needed to support out-of-order execution.

The amount of work that can be parallelized, and the performance gains,
will depend on the exact instruction sequence.
— For example, the G4 has only one load/store unit, so it can’t dispatch

two load instructions in the same cycle.
— As usual, stalls can occur due to data or control hazards.

Problem 3 from today’s homework demonstrates how rewriting code can
improve performance.

April 9, 2003 Advanced processor designs 18

Itanium introduction

Itanium began in 1993 as a joint project between Intel and HP.
— It was meant as a study of very different ISA and CPU designs.
— The first Itaniums, at 800MHz, appeared about two years ago.
— Current performance is rumored to be poor, but it uses many new,

aggressive techniques that may improve with better compilers and
hardware designs.

April 9, 2003 Advanced processor designs 19

Itanium basic architecture

Six instructions can be fetched and dispatched per cycle.
To reduce the chance of structural hazards and hardware contention, the
Itanium has a whopping seventeen execution units.
— Four ALUs and four multimedia units, like the G4.
— Two single-precision and two extended-precision floating-point units.
— Three branch units handle multi-way branches (like “switch” in C++).
— Two memory units.

There are hundreds of 64-bit registers to support all of this hardware.
— 128 general purpose registers.
— 128 floating-point registers.
— 128 registers for implementing a stack, instead of using slower RAM.
— 8 branch registers for function calls.
— 1 predicate register for conditional tests for branches.

April 9, 2003 Advanced processor designs 20

VLIW instruction set architecture

The Itanium uses a VLIW (Very Long Instruction Word) architecture.
A single Itanium instruction is 41 bits long. Notice that with 128 registers,
the register specifiers have to be 7 bits long.

A 128-bit bundle contains up to three instructions and a “template” field.

Each bundle contains only instructions that can be executed in parallel.

6 bits7 bits7 bits7 bits14 bits

PredRdRtRsOp

5 bits41 bits41 bits41 bits

TemplateInstruction 0Instruction 1Instruction 2

April 9, 2003 Advanced processor designs 21

Explicit and implicit parallelism

There are different kinds of parallelism!
— The Itanium features explicit parallelism, since programs must contain

information about what instructions can run in parallel (in the form of
bundles).

— Pipelining is sometimes referred to as implicit parallelism because
programs can be pipelined without any special programmer actions
(but compilers can help out a great deal).

The Itanium still supports regular pipelining, but it’s up to the compiler
to generate bundles that take full advantage of the Itanium’s features.
— Making the compiler do more work is a common trend, from the first

RISC processors to these VLIW architectures.
— The Itanium is much more dependent upon compilers for generating

good code than a processor like the G4.

April 9, 2003 Advanced processor designs 22

Tradeoffs

Having a VLIW compiler find parallelism has some advantages.
— The compiler can take its time to analyze a program, whereas the

CPU has just a few nanoseconds to execute each instruction.
— A compiler can also examine and optimize an entire program, but a

processor can only work on a few instructions at a time.
Some things can still be done better by the CPU, since compilers can’t
account for dynamic events.
— Compilers can’t predict branch patterns accurately.
— They can’t adjust for delays due to cache misses or page faults.

These issues illustrate a general tradeoff between compilation speed and
execution speed.

April 9, 2003 Advanced processor designs 23

Other VLIW architectures

The Transmeta Crusoe processors emulate Intel 8086 code with low power
consumption.

The Sony Playstation 2 graphics processor also has a VLIW architecture.

http://www.transmeta.com/
http://www.playstation.com/

April 9, 2003 Advanced processor designs 24

Branch predication

Having a lot of hardware lets you do some interesting things.
The Itanium can do branch predication: instead of guessing whether or
not branches are taken, it just executes both branches simultaneously!

if (r1 == r2) cmp.eq p1, p2 = r1, r2 ;;
r9 = r10 - r11; (p1) sub r9 = r10, r11

else (p2) add r5 = r6, r7
r5 = r6 + r7;

The Itanium executes both the sub and add instructions immediately after
the comparison. When the comparison result is known later, either sub or
add will be flushed.
— p1 is a predicate register which will be true if r1 = r2, and p2 is the

complement of p1.
— (p1) is a guard, ensuring that the sub is committed only if p1 is true.

Predication won’t always work (e.g., if there are structural hazards), so
regular branch prediction must still be done.

April 9, 2003 Advanced processor designs 25

Code motion

One way to avoid memory-based stalls is to move the load instruction to a
position before the data is needed.

add $s0, $s1, $s2 lw $t0, 4($sp)
lw $t0, 4($sp) add $s0, $s1, $s2
sub $a0, $a0, $t0 sub $a0, $a0, $t0

These two code sequences are semantically equivalent.
However, the sequence on the left would stall one cycle, whereas the
one on the right performs an add in place of the stall.
Good compilers can do this code motion.
— Something like this also appears on the homework due today.
— This is especially important in machines where loads might stall for

more than one cycle.

April 9, 2003 Advanced processor designs 26

Code motion across branches

Itanium compilers can do code motion across branches and stores, while
preserving precise exceptions.

add $s0, $s1, $s2 lw $t0, 4($sp)
beq $v0, $0, Label add $s0, $s1, $s2
lw $t0, 4($sp) beq $v0, $0, Label
sub $a0, $a0, $t0 sub $a0, $a0, $t0

Ordinarily, this is problematic! For instance, assume that 4($sp) contains
an invalid address.
— If the branch is taken on the left, the load will not be executed and

no exception will occur.
— The code on the right tries to avoid a stall by executing the load first,

but this would result in an exception!

April 9, 2003 Advanced processor designs 27

Speculation

In the Itanium, any potential exception from a load is deferred.
The original load instruction is actually replaced by a deferred exception
check instruction chk, as shown below.

add $s0, $s1, $s2 lw $t0, 4($sp)
beq $v0, $0, Label add $s0, $s1, $s2
lw $t0, 4($sp) beq $v0, $0, Label
sub $a0, $a0, $t0 chk

sub $a0, $a0, $t0

If the load on the right causes an exception, the destination register $t0
will be flagged, but the exception is not raised until the chk instruction
executes.
This is most useful for architectures like the Itanium, where loads can
stall for multiple cycles; the chk can be done in just one cycle instead.

April 9, 2003 Advanced processor designs 28

Summary

Modern processors try to do as much work in parallel as possible.
— Superscalar processors can dispatch multiple instructions per cycle.
— Lots of registers are needed to feed lots of functional units.
— Memory bandwidths are large to support multiple data accesses.

A lot of effort goes toward minimizing costly stalls due to dependencies.
— Out-of-order execution reduces the impact of stalls, but at the cost of

extra reservation stations and commit hardware.
— Dedicated load/store units handle memory operations in parallel with

other operations.
— Control and data speculation help keep the Itanium pipeline full.

Compilers are important for good performance. They can greatly help in
maximizing CPU usage and minimizing the need for stalls.

	Advanced processor designs
	General ways to make CPUs faster
	Pipelining is parallelism
	Motivation for some advanced ideas
	Deeper pipelines
	Superscalar architectures
	Instruction memory contention
	Register file contention
	Separate register files
	PowerPC introduction
	G4 superscalar architecture
	Stalls are even more dangerous here
	Dynamic pipelining
	Out-of-order execution
	Reordering
	G4 block diagram
	G4 summary
	Itanium introduction
	Itanium basic architecture
	VLIW instruction set architecture
	Explicit and implicit parallelism
	Tradeoffs
	Other VLIW architectures
	Branch predication
	Code motion
	Code motion across branches
	Speculation
	Summary

		hhuang@cs.uiuc.edu
	2003-08-22T02:26:19-0500
	Urbana, Illinois
	Howard Huang
	I am the author of this document

