
March 17, 2003 ©2001-2003 Howard Huang 1

Pipelining

We’ve seen two possible implementations of the MIPS architecture.
— A single-cycle datapath executes each instruction in just one clock

cycle, but the cycle time may be very long.
— A multicycle datapath has much shorter cycle times and higher clock

rates, but each instruction requires many cycles to execute.
A third approach, pipelining, yields the best of both worlds and is used in
every modern desktop processor.
— Cycle times are short so clock rates are high.
— But we can still execute an instruction in about one clock cycle!

Today we introduce pipelining and its benefits, and on Wednesday we’ll
show a pipelined datapath and control unit.
After spring break we’ll talk about what makes pipelining difficult in real
life and what to do about it.

March 17, 2003 Pipelining 2

Instruction execution review

Executing a MIPS instruction can take up to five steps.

However, as we saw, not all instructions need all five steps.

Store a result in the destination register.WBWriteback

Read or write the data memory.MEMMemory

Compute an R-type result or a branch target.EXExecute

Read source registers and generate control signals.IDInstruction Decode

Read an instruction from memory.IFInstruction Fetch

DescriptionNameStep

WBMEMEXIDIFlw

MEMEXIDIFsw

WBEXIDIFR-type

EXIDIFbeq

Steps requiredInstruction

March 17, 2003 Pipelining 3

Single-cycle datapath diagram

4

Shift
left 2

PC Add

Add

0
M
u
x
1

PCSrc

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg
Read
address

Instruction
memory

Instruction
[31-0]

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

March 17, 2003 Pipelining 4

Single-cycle review

All five execution steps occur in one clock cycle.
This means the cycle time must be long enough to accommodate all the
steps of the most complex instruction—a “lw” in our instruction set.
— If the register file has a 1ns latency and the memories and ALU have a

2ns latency, “lw” will require 8ns.
— Thus all instructions will take 8ns to execute.

Each hardware element can only be used once per clock cycle.
— A “lw” or “sw” must access memory twice (in the IF and MEM stages),

so there are separate instruction and data memories.
— There are multiple adders, since each instruction increments the PC

(IF) and performs another computation (EX). On top of that, branches
also need to compute a target address.

March 17, 2003 Pipelining 5

Multicycle datapath diagram

PCWrite

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

0
M
u
x
1

IorD

A

B
ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]

[15-0]

Instruction
register

Memory
data

register

IRWrite
0
M
u
x
1

RegDst

0
M
u
x
1

MemToReg

MemRead

MemWrite

March 17, 2003 Pipelining 6

Multicycle review

Instruction execution is split into five stages, each taking one clock cycle.
The cycle time is shorter, since each stage is relatively simple. With a 1ns
delay for registers and 2ns for the memory and ALU, the cycle time would
be 2ns.
Only necessary stages are executed, so more complex instructions will
not slow down simpler ones.

The actual CPI will depend on the particular instruction mix.
We can get by with only one memory and one ALU, because they can be
reused in different clock cycles of a single instruction execution.

5

4

4

3

Cycles

WBMEMEXIDIFlw

MEMEXIDIFsw

WBEXIDIFR-type

EXIDIFbeq

Steps requiredInstruction

March 17, 2003 Pipelining 7

Example: Instruction Fetch (IF)

Let’s quickly review how lw is executed in the single-cycle datapath.
We’ll ignore PC incrementing and branching for now.
In the Instruction Fetch (IF) step, we read the instruction memory.

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

March 17, 2003 Pipelining 8

Instruction Decode (ID)

The Instruction Decode (ID) step reads the source register from the
register file.

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

March 17, 2003 Pipelining 9

Execute (EX)

The third step, Execute (EX), computes the effective memory address
from the source register and the instruction’s constant field.

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

March 17, 2003 Pipelining 10

Memory (MEM)

The Memory (MEM) step involves reading the data memory, from the
address computed by the ALU.

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

March 17, 2003 Pipelining 11

Writeback (WB)

Finally, in the Writeback (WB) step, the memory value is stored into the
destination register.

RegWrite

MemToRegMemWriteRead
address

Instruction
memory

Instruction
[31-0]

I [25 - 21]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemRead

1
M
u
x
0

Sign
extend

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrc

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

I [15 - 0]

March 17, 2003 Pipelining 12

A bunch of lazy functional units

Notice that each execution step uses a different functional unit.
In other words, the main units are idle for most of the 8ns cycle!
— The instruction RAM is used for just 2ns at the start of the cycle.
— Registers are read once in ID (1ns), and written once in WB (1ns).
— The ALU is used for 2ns near the middle of the cycle.
— Reading the data memory only takes 2ns as well.

That’s a lot of expensive hardware sitting around doing nothing.

March 17, 2003 Pipelining 13

Putting those slackers to work

We shouldn’t have to wait for the entire instruction to complete before
we can re-use the functional units.
For example, the instruction memory is free in the Instruction Decode
step as shown below, so...

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Instruction Decode (ID)Idle

March 17, 2003 Pipelining 14

Decoding and fetching together

Why don’t we go ahead and fetch the next instruction while we’re
decoding the first one?

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Read
address

Decode 1st instructionFetch 2nd

March 17, 2003 Pipelining 15

Executing, decoding and fetching

Similarly, once the first instruction enters its Execute stage, we can go
ahead and decode the second instruction.
But now the instruction memory is free again, so we can fetch the third
instruction!

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Decode 2ndFetch 3rd Execute 1st

March 17, 2003 Pipelining 16

Working hard

The idea behind pipelining is to maximize the usage of the hardware by
overlapping the execution of several instructions.
Each of our five execution steps uses a different functional unit.
Conceivably we can have up to five instructions executing at the same
time—one in each of the IF, ID, EX, MEM and WB stages.
To make this work, we will go back to the single-cycle datapath with its
multiple adders and memories, so many instructions can execute together
without interference.

March 17, 2003 Pipelining 17

A pipeline diagram

WBMEMEXIDIFadd $sp, $sp, -4
WBMEMEXIDIFor $s0, $s1, $s2

WBMEMEXIDIFand $t1, $t2, $t3
WBMEMEXIDIFsub $v0, $a0, $a1

WBMEMEXIDIFlw $t0, 4($sp)
987654321

Clock cycle

A pipeline diagram shows the execution of a series of instructions.
— The instruction sequence is shown vertically, from top to bottom.
— Clock cycles are shown horizontally, from left to right.
— Each instruction is divided into its component stages. (We show five

stages for every instruction, which will make the control unit easier.)
This clearly indicates the overlapping of instructions. For example, there
are three instructions active in the third cycle above.
— The “lw” instruction is in its Execute stage.
— Simultaneously, the “sub” is in its Instruction Decode stage.
— Also, the “and” instruction is just being fetched.

March 17, 2003 Pipelining 18

Pipeline terminology

WBMEMEXIDIFadd $sp, $sp, -4
WBMEMEXIDIFor $s0, $s1, $s2

WBMEMEXIDIFand $t1, $t2, $t3
WBMEMEXIDIFsub $v0, $a0, $a1

WBMEMEXIDIFlw $t0, 4($sp)
987654321

Clock cycle

filling full emptying

The pipeline depth is the number of stages—in this case, five.
In the first four cycles here, the pipeline is filling, since there are unused
functional units.
In cycle 5, the pipeline is full. Five instructions are being executed
simultaneously, so all hardware units are in use.
In cycles 6-9, the pipeline is emptying.

March 17, 2003 Pipelining 19

Performance benefits of pipelining

WBMEMEXIDIFadd $sp, $sp, -4
WBMEMEXIDIFor $s0, $s1, $s2

WBMEMEXIDIFand $t1, $t2, $t3
WBMEMEXIDIFsub $v0, $a0, $a1

WBMEMEXIDIFlw $t0, 4($sp)
987654321

Clock cycle

How much time would it take to execute these five instructions?
— We would need 40ns with a single-cycle CPU with an 8ns cycle time.
— In a multicycle design, these instructions require 42ns.
— With pipelining, we need just 9 cycles, and 18ns, as shown above!

What kind of speedups are we talking about?
— Compared to a single-cycle design, 40ns/18ns = 2.2.
— Versus the multicycle machine, the speedup is 42ns/18ns = 2.3!

March 17, 2003 Pipelining 20

It gets better!

WBMEMEXIDIFadd $sp, $sp, -4
WBMEMEXIDIFor $s0, $s1, $s2

WBMEMEXIDIFand $t1, $t2, $t3
WBMEMEXIDIFsub $v0, $a0, $a1

WBMEMEXIDIFlw $t0, 4($sp)
987654321

Clock cycle

This instruction sequence is too short.
— Most of the cycles are spent filling or emptying the pipeline.
— We only achieve full utilization for one clock cycle.

Imagine a longer program with 1000 instructions.
— It takes 4 cycles to fill the pipeline, and 1000 more cycles to complete

all the instructions.
— So it takes 1004 cycles to execute 1000 instructions.
— That’s almost one cycle per instruction, and a speedup of 3.98 over

the single-cycle datapath!

March 17, 2003 Pipelining 21

Almost one cycle per instruction

WBMEMEXIDIFadd $sp, $sp, -4
WBMEMEXIDIFor $s0, $s1, $s2

WBMEMEXIDIFand $t1, $t2, $t3
WBMEMEXIDIFsub $v0, $a0, $a1

WBMEMEXIDIFlw $t0, 4($sp)
987654321

Clock cycle

Here’s another way to visualize the benefits of pipelining.
— In the first four stages of the diagram above, the pipeline is filling.
— But after that, while the pipeline is full or emptying, you can see that

one instruction completes on every cycle.
So except for some initial overhead, we really are executing at the rate
of one cycle per instruction.

March 17, 2003 Pipelining 22

It’s GRRReeeaaAAT!

Tony the Tiger is trademark of Kellogg.
Don’t sue me.

So pipelining can really deliver the goods.
— The CPI is nearly 1, like in a single-cycle processor.
— But the cycle time is very short (2ns), like a multicycle datapath.
— This adds up to excellent performance!

March 17, 2003 Pipelining 23

Ideal speedup

WBMEMEXIDIFadd $sp, $sp, -4
WBMEMEXIDIFor $s0, $s1, $s2

WBMEMEXIDIFand $t1, $t2, $t3
WBMEMEXIDIFsub $v0, $a0, $a1

WBMEMEXIDIFlw $t0, 4($sp)
987654321

Clock cycle

In our pipeline, we can execute up to five instructions simultaneously.
— This implies that the maximum speedup is 5 times.
— In general, the ideal speedup equals the pipeline depth.

Why was our speedup on the previous slide “only” 3.98 times?
— The pipeline stages are imbalanced: a register file operation can be

done in 1ns, but we must stretch that out to 2ns to keep the ID and
WB stages synchronized with IF, EX and MEM.

— Balancing the stages is one of the many hard parts in designing a
pipelined processor.

March 17, 2003 Pipelining 24

The pipelining paradox

WBMEMEXIDIFadd $sp, $sp, -4
WBMEMEXIDIFor $s0, $s1, $s2

WBMEMEXIDIFand $t1, $t2, $t3
WBMEMEXIDIFsub $v0, $a0, $a1

WBMEMEXIDIFlw $t0, 4($sp)
987654321

Clock cycle

Pipelining does not improve the execution time of any single instruction.
Each instruction here actually takes longer to execute than in a single-
cycle datapath (10ns vs. 8ns)!
Instead, pipelining increases the throughput, or the amount of work done
per unit time. Here, several instructions are executed together in each
clock cycle.
The result is improved execution time for a sequence of instructions, such
as an entire program.

March 17, 2003 Pipelining 25

Summary

Pipelining attempts to maximize hardware usage by overlapping the
execution stages of several different instructions.
Pipelining offers amazing speedup.
— The CPU throughput is dramatically improved, because several

instructions can be executing concurrently.
— In the best case, one instruction finishes on every cycle, and the

speedup is equal to the pipeline depth.
Next time we’ll see an actual datapath and control unit for a pipelined
processor, so we can see how to make all these wild ideas work.

	Pipelining
	Instruction execution review
	Single-cycle datapath diagram
	Single-cycle review
	Multicycle datapath diagram
	Multicycle review
	Example: Instruction Fetch (IF)
	Instruction Decode (ID)
	Execute (EX)
	Memory (MEM)
	Writeback (WB)
	A bunch of lazy functional units
	Putting those slackers to work
	Decoding and fetching together
	Executing, decoding and fetching
	Working hard
	A pipeline diagram
	Pipeline terminology
	Performance benefits of pipelining
	It gets better!
	Almost one cycle per instruction
	It’s GRRReeeaaAAT!
	Ideal speedup
	The pipelining paradox
	Summary

		hhuang@cs.uiuc.edu
	2003-08-22T02:27:59-0500
	Urbana, Illinois
	Howard Huang
	I am the author of this document

