
March 10, 2003 ©2001-2003 Howard Huang 1

Multicycle control

Last time we introduced a multicycle datapath, which addresses some of
the performance and cost problems of a single-cycle datapath.
— Instruction execution is divided into several steps.
— Each instruction uses only as many steps as necessary.
— Each step takes one clock cycle.
— The datapath needs just one ALU and one memory.

Today we’ll show how to make this multicycle datapath go.
— We present the correct control signals for each instruction.
— Then we can design the control unit for generating those signals.

March 10, 2003 Multicycle control 2

The multicycle datapath

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]

[15-0]

Instruction
register

Memory
data

register

IRWrite
0
M
u
x
1

RegDst

0
M
u
x
1

MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

March 10, 2003 Multicycle control 3

Differences from the single-cycle datapath

Two extra adders, and one of the memories, were removed.
Some additional multiplexers are needed to control everything.
— The ALU now operates on registers, memory displacements, branch

offsets, and the PC.
— A single memory contains both instructions and data, and the address

is supplied by either the PC or the ALU.
Since instructions need multiple cycles for execution, the PC is no longer
updated on every clock cycle.
Intermediate registers preserve data that’s used in different cycles while
executing one instruction. Since MDR, A, B and ALUOut only need to save
data for one cycle, they are automatically written to on each cycle.

March 10, 2003 Multicycle control 4

Executing a beq instruction

We can execute a branch instruction in three stages or clock cycles.

beq $t0, $t1, offset

Stage 1 includes two actions which use two separate functional units: the
memory and the ALU.
— Fetch the instruction from memory and store it in IR.

IR = Mem[PC]

— Use the ALU to increment the PC by 4.

PC = PC + 4

Again, the writes to IR and PC will occur on the next positive edge of the
clock signal, at the end of the stage.

March 10, 2003 Multicycle control 5

Stage 1: Instruction fetch and PC increment

PCWrite

0
1
2
3

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]

[15-0]

Instruction
register

Memory
data

register

0
M
u
x
1

RegDst

0
M
u
x
1

MemToReg

IRWrite

IR = Mem[PC]
IorD

0
M
u
x
1

MemRead

MemWrite

PC = PC + 4

March 10, 2003 Multicycle control 6

Stage 1 control signals

Instruction fetch: IR = Mem[PC]

Increment the PC: PC = PC + 4

We’ll assume that all control signals not listed are implicitly set to 0.

Save memory contents to instruction register1IRWrite
Use PC as the memory read address0IorD
Read from memory1MemRead

DescriptionValueSignal

Change PC1PCWrite
Update PC from the ALU output0PCSource

Perform addition010ALUOp
Use constant 4 as the second ALU operand01ALUSrcB
Use PC as the first ALU operand0ALUSrcA

DescriptionValueSignal

March 10, 2003 Multicycle control 7

Read registers and compute the branch target

Stage 2 of the beq execution also includes two actions. Both actions can
be done in the same cycle, since they use different functional units.
— Read the contents of source registers rs and rt, and store them in the

intermediate registers A and B. (Remember the rs and rt fields come
from the instruction register IR.)

A = Reg[IR[25-21]]
B = Reg[IR[20-16]]

— Compute the branch target address by adding the new PC (the original
PC + 4) to the sign-extended, shifted constant from IR.

ALUOut = PC + (sign-extend(IR[15-0]) << 2)

We save the target address in ALUOut for now, since we don’t know
yet if the branch should be taken.

March 10, 2003 Multicycle control 8

Stage 2: Register fetch & branch target computation

PCWrite

ALU
OutResult

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

Read source
registersPC

0
M
u
x
1

IorD

A

B

4[31-26]
[25-21]
[20-16]
[15-11]

[15-0]

Instruction
register

Memory
data

register

IRWrite
0
M
u
x
1

RegDst

0
M
u
x
1

MemToReg

MemRead

MemWrite

Compute branch
target address

March 10, 2003 Multicycle control 9

Stage 2 control signals

No other control signals need to be set for the register reading operations
A = Reg[IR[25-21]] and B = Reg[IR[20-16]].
— IR[25-21] and IR[20-16] are already applied to the register file.
— Registers A and B are already written on every clock cycle.

Branch target computation: ALUOut = PC + (sign-extend(IR[15-0]) << 2)

ALUOut is also written automatically on each clock cycle.

Add and save the result in ALUOut010ALUOp
Use (sign-extend(IR[15-0]) << 2) as second operand11ALUSrcB
Use PC as the first ALU operand0ALUSrcA

DescriptionValueSignal

March 10, 2003 Multicycle control 10

Optimistic execution

We don’t know whether or not to take a branch until after we compare
the values in intermediate registers A and B.
But we can still go ahead and compute the branch target first. The book
calls this optimistic execution.
— The ALU is otherwise free during this clock cycle.
— Nothing is harmed by doing the computation early. If the branch is not

taken, we can just ignore the ALU result.
This idea is also used in more advanced CPU design techniques.
— Modern CPUs perform branch prediction, which we’ll discuss in a few

weeks in the context of pipelining.
— The Intel IA-64 architecture and the Itanium processors go one step

further with branch predication and data speculation.

March 10, 2003 Multicycle control 11

Branch completion

Stage 3 is the final cycle needed for executing a branch instruction.

if (A == B) then
PC = ALUOut

Remember that A and B are compared by subtracting and testing for a
result of 0, so we must use the ALU again in this stage.

March 10, 2003 Multicycle control 12

Stage 3 (beq): Branch completion

PCWrite

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

0
M
u
x
1

IorD

A

B
ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]

[15-0]

Instruction
register

Memory
data

register

IRWrite
0
M
u
x
1

RegDst

0
M
u
x
1

MemToReg

Use the target address
computed in stage 2

MemRead

MemWrite

Check for equality
of register contents

March 10, 2003 Multicycle control 13

Stage 3 (beq) control signals

Comparison: if (A == B) ...

Branch: ...then PC = ALUOut

ALUOut contains the ALU result from the previous cycle, which would be
the branch target. We can write that to the PC, even though the ALU is
doing something different (comparing A and B) during the current cycle.

PCWrite

Subtract, so Zero will be set if A = B110ALUOp
Use B as the second ALU operand00ALUSrcB
Use A as the first ALU operand1ALUSrcA

DescriptionValueSignal

Change PC only if Zero is true (i.e., A = B)Zero
Update PC from the ALUOut register1PCSource

DescriptionValueSignal

March 10, 2003 Multicycle control 14

Executing arithmetic instructions

What about an R-type instruction like add $t1, $t1, $t2?
The first two stages are the same as for the branch.
— Stage 1 involves instruction fetch and PC increment.

IR = Mem[PC]
PC = PC + 4

— Stage 2 is register fetch and branch target computation.

A = Reg[IR[25-21]]
B = Reg[IR[20-16]]

ALUOut = PC + (sign-extend(IR[15-0]) << 2)

Hey Howard! R-type instructions don’t branch!
— But doing this optimistic computation in Stage 2 won’t hurt anything.
— It makes the handling of beq and R-type instructions more uniform.

March 10, 2003 Multicycle control 15

Stages 3-4 (R-type): ALU execution and writeback

Stage 3 for an arithmetic instruction is simply ALU computation.

ALUOut = A op B

— A and B are the intermediate registers holding the source operands.
— The ALU operation is determined by the instruction’s “func” field and

could be one of add, sub, and, or, slt.

Stage 4, the final R-type stage, is to store the ALU result generated in the
previous cycle into the destination register rd.

Reg[IR[15-11]] = ALUOut

March 10, 2003 Multicycle control 16

Stage 3 (R-type): instruction execution

PCWrite

Result

Zero
ALU

ALUOp

0
M
u
x
1

PCSource

ALU
Out

Save the result
in ALUOut

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

PC

0
M
u
x
1

IorD

Sign
extend

Shift
left 2

A

B

4[31-26]
[25-21]
[20-16]
[15-11]

[15-0]

Instruction
register

Memory
data

register

IRWrite
0
M
u
x
1

RegDst

0
M
u
x
1

MemToReg

MemRead

MemWrite

Do some computation
on two source registers

March 10, 2003 Multicycle control 17

Stage 4 (R-type): write back

PCWrite

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

0
M
u
x
1

PCSource

ALU
Out

Take the ALU result
from the last cycle...

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

...and store it to
register “rd”

RegWrite

Address

Memory

Mem
Data

Write
data

PC

0
M
u
x
1

IorD

RegDst
MemRead

Sign
extend

Shift
left 2

A

[31-26]
[25-21]
[20-16]
[15-11]

[15-0]

Instruction
register

IRWrite B

4

Memory
data

register

0
M
u
x
1

0
M
u
x
1

MemWrite

MemToReg

March 10, 2003 Multicycle control 18

Stages 3-4 (R-type) control signals

Stage 3 (execution): ALUOut = A op B

Stage 4 (writeback): Reg[IR[15-11]] = ALUOut

Do the operation specified in the “func” fieldfuncALUOp
Use B as the second ALU operand00ALUSrcB
Use A as the first ALU operand1ALUSrcA

DescriptionValueSignal

ALUOut contains the data to write0MemToReg
Use field rd as the destination register1RegDst
Write to the register file1RegWrite

DescriptionValueSignal

March 10, 2003 Multicycle control 19

Executing a sw instruction

A store instruction, like sw $a0, 16($sp), also shares the same first two
stages as the other instructions.
— Stage 1: instruction fetch and PC increment.
— Stage 2: register fetch and branch target computation.

Stage 3 computes the effective memory address using the ALU.

ALUOut = A + sign-extend(IR[15-0])

A contains the base register (like $sp), and IR[15-0] is the 16-bit constant
offset from the instruction word, which is not shifted.

Stage 4 saves the register contents (here, $a0) into memory.

Mem[ALUOut] = B

Again, remember that the second source register rt was already read in
Stage 2, and its contents are in intermediate register B.

March 10, 2003 Multicycle control 20

Stage 3 (sw): effective address computation

PCWrite

Result

Zero
ALU

ALUOp

0
M
u
x
1

0
1
2
3

ALU
Out

Compute an effective
address and store it

in ALUOut

ALUSrcA

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

0
M
u
x
1

IorD

A

B

4[31-26]
[25-21]
[20-16]
[15-11]

[15-0]

Instruction
register

Memory
data

register

IRWrite
0
M
u
x
1

RegDst

0
M
u
x
1

MemToReg

MemRead

MemWrite

March 10, 2003 Multicycle control 21

Stage 4 (sw): memory write

PCWrite

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

0
M
u
x
1

PCSource

ALU
Out

Use the effective
address from stage 3...

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

PC

A

B

4[31-26]
[25-21]
[20-16]
[15-11]

[15-0]

Instruction
register

Memory
data

register

IRWrite
0
M
u
x
1

RegDst

0
M
u
x
1

MemToReg

...into memory.

IorD

0
M
u
x
1

MemRead

MemWrite

...to store data
from one of the

registers...

March 10, 2003 Multicycle control 22

Stages 3-4 (sw) control signals

Stage 3 (address computation): ALUOut = A + sign-extend(IR[15-0])

Stage 4 (memory write): Mem[ALUOut] = B

The memory’s “Write data” input always comes from the B intermediate
register, so no selection is needed.

MemWrite

Add and store the resulting address in ALUOut010ALUOp
Use sign-extend(IR[15-0]) as the second operand10ALUSrcB
Use A as the first ALU operand1ALUSrcA

DescriptionValueSignal

Use ALUOut as the memory address0IorD
Write to the memory0

DescriptionValueSignal

March 10, 2003 Multicycle control 23

Executing a lw instruction

Finally, lw is the most complex instruction, requiring five stages.
The first two are like all the other instructions.
— Stage 1: instruction fetch and PC increment.
— Stage 2: register fetch and branch target computation.

The third stage is the same as for sw, since we have to compute an
effective memory address in both cases.
— Stage 3: compute the effective memory address.

March 10, 2003 Multicycle control 24

Stages 4-5 (lw): memory read and register write

Stage 4 is to read from the effective memory address, and to store the
value in the intermediate register MDR (memory data register).

MDR = Mem[ALUOut]

Stage 5 stores the contents of MDR into the destination register.

Reg[IR[20-16]] = MDR

Remember that the destination register for lw is field rt (bits 20-16) and
not field rd (bits 15-11).

March 10, 2003 Multicycle control 25

Stage 4 (lw): memory read

PCWrite

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

[31-26]
[25-21]
[20-16]
[15-11]

[15-0]

Instruction
register

Memory
data

register

IRWrite
0
M
u
x
1

RegDst

0
M
u
x
1

MemToReg
...into MDR.

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4

...to read data
from memory... Use the effective

address from stage 3...IorD

0
M
u
x
1

MemRead

MemWrite

March 10, 2003 Multicycle control 26

Stage 5 (lw): register write

PCWrite

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

[31-26]
[25-21]
[20-16]
[15-11]

[15-0]

Instruction
register

Memory
data

register

IRWrite
0
M
u
x
1

0
M
u
x
1

MemToReg

Take MDR...

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

...and store it
in register rt.PC

0
M
u
x
1

IorD

RegDst
MemRead

A

B
ALU
Out

4

MemWrite

March 10, 2003 Multicycle control 27

Stages 4-5 (lw) control signals

Stage 4 (memory read): MDR = Mem[ALUOut]

The memory contents will be automatically written to MDR.

Stage 5 (writeback): Reg[IR[20-16]] = MDR

Use ALUOut as the memory address1IorD
Read from memory1MemRead

DescriptionValueSignal

Write data from MDR (from memory)1MemToReg
Use field rt as the destination register0RegDst
Store new data in the register file1RegWrite

DescriptionValueSignal

March 10, 2003 Multicycle control 28

Multicycle control unit

The control unit is responsible for producing all of these control signals.
Each instruction requires a sequence of control signals, generated over
multiple clock cycles.
— This implies that we need a state machine.
— The datapath control signals will be outputs of the state machine.

Different instructions require different sequences of steps.
— This implies the instruction word is an input to the state machine.
— The next state depends upon the exact instruction being executed.

After we finish executing one instruction, we’ll have to repeat the entire
process again to execute the next instruction.

March 10, 2003 Multicycle control 29

Finite-state machine for the control unit

IorD = 0
MemRead = 1
IRWrite = 1
ALUSrcA = 0
ALUSrcB = 01
ALUOp = 010
PCSource = 0
PCWrite = 1

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 010

Branch
completion

R-type
execution

Memory
read

Register
write

Op = R-type

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 110

PCWrite = Zero
PCSource = 1

ALUSrcA = 1
ALUSrcB = 00
ALUOp = func

RegWrite = 1
RegDst = 1

MemToReg = 0

MemWrite = 1
IorD = 1

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 010

MemRead = 1
IorD = 1

RegWrite = 1
RegDst = 0

MemToReg = 1

R-type
writeback

Memory
write

Op = BEQ

Instruction fetch
and PC increment

Register fetch and
branch computation

Effective address
computation Op = SW

Op = LW/SW

Op = LW

March 10, 2003 Multicycle control 30

Implementing the FSM

This can be translated into a state table; here are the first two states.

You can implement this the hard way.
— Represent the current state using flip-flops or a register.
— Find equations for the next state and (control signal) outputs in terms

of the current state and input (instruction word).
Or you can use the easy way.
— Stick the whole state table into a memory, like a ROM or a PLA.
— This would be much easier, since you don’t have to derive equations.

X0101100XX000X0Compute
eff addr

LW/S
W

Reg
Fetch

X0101100XX000X0R-type
execute

R-typeReg
Fetch

X0101100XX000X0Branch
compl

BEQReg
Fetch

00100100XX10101Reg
Fetch

XInstr
Fetch

PC
Source

ALU
Op

ALU
SrcB

ALU
SrcA

Reg
Write

MemTo
Reg

Reg
Dst

IR
Write

Mem
Write

Mem
ReadIorD

PC
Write

Next
State

Input
(Op)

Current
State

Output (Control signals)

March 10, 2003 Multicycle control 31

Summary

Generating control signals for the multicycle datapath is complicated!
— Each instruction takes several cycles to execute.
— Different instructions require different control signals and a different

number of cycles.
— We have to provide the control signals in the right sequence.

Next time we’ll finish talking about the multicycle processor.
— Microprogramming is another way to implement control units.
— We’ll also examine the performance of this multicycle approach.

	Multicycle control
	The multicycle datapath
	Differences from the single-cycle datapath
	Executing a beq instruction
	Stage 1: Instruction fetch and PC increment
	Stage 1 control signals
	Read registers and compute the branch target
	Stage 2: Register fetch & branch target computation
	Stage 2 control signals
	Optimistic execution
	Branch completion
	Stage 3 (beq): Branch completion
	Stage 3 (beq) control signals
	Executing arithmetic instructions
	Stages 3-4 (R-type): ALU execution and writeback
	Stage 3 (R-type): instruction execution
	Stage 4 (R-type): write back
	Stages 3-4 (R-type) control signals
	Executing a sw instruction
	Stage 3 (sw): effective address computation
	Stage 4 (sw): memory write
	Stages 3-4 (sw) control signals
	Executing a lw instruction
	Stages 4-5 (lw): memory read and register write
	Stage 4 (lw): memory read
	Stage 5 (lw): register write
	Stages 4-5 (lw) control signals
	Multicycle control unit
	Finite-state machine for the control unit
	Implementing the FSM
	Summary

		hhuang@cs.uiuc.edu
	2003-08-22T02:28:22-0500
	Urbana, Illinois
	Howard Huang
	I am the author of this document

