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Multicycle control

Last time we introduced a multicycle datapath, which addresses some of 
the performance and cost problems of a single-cycle datapath.
— Instruction execution is divided into several steps.
— Each instruction uses only as many steps as necessary.
— Each step takes one clock cycle.
— The datapath needs just one ALU and one memory.

Today we’ll show how to make this multicycle datapath go.
— We present the correct control signals for each instruction.
— Then we can design the control unit for generating those signals.
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The multicycle datapath
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Differences from the single-cycle datapath

Two extra adders, and one of the memories, were removed.
Some additional multiplexers are needed to control everything.
— The ALU now operates on registers, memory displacements, branch 

offsets, and the PC.
— A single memory contains both instructions and data, and the address 

is supplied by either the PC or the ALU.
Since instructions need multiple cycles for execution, the PC is no longer 
updated on every clock cycle.
Intermediate registers preserve data that’s used in different cycles while 
executing one instruction. Since MDR, A, B and ALUOut only need to save 
data for one cycle, they are automatically written to on each cycle.
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Executing a beq instruction

We can execute a branch instruction in three stages or clock cycles.

beq $t0, $t1, offset

Stage 1 includes two actions which use two separate functional units: the 
memory and the ALU.
— Fetch the instruction from memory and store it in IR.

IR = Mem[PC]

— Use the ALU to increment the PC by 4.

PC = PC + 4

Again, the writes to IR and PC will occur on the next positive edge of the 
clock signal, at the end of the stage.
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Stage 1: Instruction fetch and PC increment
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Stage 1 control signals

Instruction fetch: IR = Mem[PC]

Increment the PC: PC = PC + 4

We’ll assume that all control signals not listed are implicitly set to 0.

Save memory contents to instruction register1IRWrite
Use PC as the memory read address0IorD
Read from memory1MemRead

DescriptionValueSignal

Change PC1PCWrite
Update PC from the ALU output0PCSource

Perform addition010ALUOp
Use constant 4 as the second ALU operand01ALUSrcB
Use PC as the first ALU operand0ALUSrcA

DescriptionValueSignal
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Read registers and compute the branch target

Stage 2 of the beq execution also includes two actions. Both actions can 
be done in the same cycle, since they use different functional units.
— Read the contents of source registers rs and rt, and store them in the 

intermediate registers A and B. (Remember the rs and rt fields come 
from the instruction register IR.)

A = Reg[IR[25-21]]
B = Reg[IR[20-16]]

— Compute the branch target address by adding the new PC (the original 
PC + 4) to the sign-extended, shifted constant from IR. 

ALUOut = PC + (sign-extend(IR[15-0]) << 2)

We save the target address in ALUOut for now, since we don’t know 
yet if the branch should be taken.
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Stage 2: Register fetch & branch target computation
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Stage 2 control signals

No other control signals need to be set for the register reading operations 
A = Reg[IR[25-21]] and B = Reg[IR[20-16]].
— IR[25-21] and IR[20-16] are already applied to the register file.
— Registers A and B are already written on every clock cycle.

Branch target computation: ALUOut = PC + (sign-extend(IR[15-0]) << 2)

ALUOut is also written automatically on each clock cycle.

Add and save the result in ALUOut010ALUOp
Use (sign-extend(IR[15-0]) << 2) as second operand11ALUSrcB
Use PC as the first ALU operand0ALUSrcA

DescriptionValueSignal
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Optimistic execution

We don’t know whether or not to take a branch until after we compare 
the values in intermediate registers A and B.
But we can still go ahead and compute the branch target first. The book 
calls this optimistic execution.
— The ALU is otherwise free during this clock cycle.
— Nothing is harmed by doing the computation early. If the branch is not 

taken, we can just ignore the ALU result.
This idea is also used in more advanced CPU design techniques.
— Modern CPUs perform branch prediction, which we’ll discuss in a few 

weeks in the context of pipelining.
— The Intel IA-64 architecture and the Itanium processors go one step 

further with branch predication and data speculation.



March 10, 2003 Multicycle control 11

Branch completion

Stage 3 is the final cycle needed for executing a branch instruction.

if (A == B) then
PC = ALUOut

Remember that A and B are compared by subtracting and testing for a 
result of 0, so we must use the ALU again in this stage.
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Stage 3 (beq): Branch completion
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Stage 3 (beq) control signals

Comparison: if (A == B) ...

Branch: ...then PC = ALUOut

ALUOut contains the ALU result from the previous cycle, which would be 
the branch target. We can write that to the PC, even though the ALU is 
doing something different (comparing A and B) during the current cycle.

PCWrite

Subtract, so Zero will be set if A = B110ALUOp
Use B as the second ALU operand00ALUSrcB
Use A as the first ALU operand1ALUSrcA

DescriptionValueSignal

Change PC only if Zero is true (i.e., A = B)Zero
Update PC from the ALUOut register1PCSource

DescriptionValueSignal
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Executing arithmetic instructions

What about an R-type instruction like add $t1, $t1, $t2?
The first two stages are the same as for the branch.
— Stage 1 involves instruction fetch and PC increment.

IR = Mem[PC]
PC = PC + 4

— Stage 2 is register fetch and branch target computation.

A = Reg[IR[25-21]]
B = Reg[IR[20-16]]

ALUOut = PC + (sign-extend(IR[15-0]) << 2)

Hey Howard! R-type instructions don’t branch!
— But doing this optimistic computation in Stage 2 won’t hurt anything.
— It makes the handling of beq and R-type instructions more uniform.
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Stages 3-4 (R-type): ALU execution and writeback

Stage 3 for an arithmetic instruction is simply ALU computation.

ALUOut = A op B

— A and B are the intermediate registers holding the source operands. 
— The ALU operation is determined by the instruction’s “func” field and 

could be one of add, sub, and, or, slt.

Stage 4, the final R-type stage, is to store the ALU result generated in the 
previous cycle into the destination register rd.

Reg[IR[15-11]] = ALUOut
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Stage 3 (R-type): instruction execution
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Stage 4 (R-type): write back
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Stages 3-4 (R-type) control signals

Stage 3 (execution): ALUOut = A op B

Stage 4 (writeback): Reg[IR[15-11]] = ALUOut

Do the operation specified in the “func” fieldfuncALUOp
Use B as the second ALU operand00ALUSrcB
Use A as the first ALU operand1ALUSrcA

DescriptionValueSignal

ALUOut contains the data to write0MemToReg
Use field rd as the destination register1RegDst
Write to the register file1RegWrite

DescriptionValueSignal
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Executing a sw instruction

A store instruction, like sw $a0, 16($sp), also shares the same first two 
stages as the other instructions.
— Stage 1: instruction fetch and PC increment.
— Stage 2: register fetch and branch target computation.

Stage 3 computes the effective memory address using the ALU.

ALUOut = A + sign-extend(IR[15-0])

A contains the base register (like $sp), and IR[15-0] is the 16-bit constant 
offset from the instruction word, which is not shifted.

Stage 4 saves the register contents (here, $a0) into memory.

Mem[ALUOut] = B

Again, remember that the second source register rt was already read in 
Stage 2, and its contents are in intermediate register B.
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Stage 3 (sw): effective address computation
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Stage 4 (sw): memory write

PCWrite
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Stages 3-4 (sw) control signals

Stage 3 (address computation): ALUOut = A + sign-extend(IR[15-0])

Stage 4 (memory write): Mem[ALUOut] = B

The memory’s “Write data” input always comes from the B intermediate 
register, so no selection is needed.

MemWrite

Add and store the resulting address in ALUOut010ALUOp
Use sign-extend(IR[15-0]) as the second operand10ALUSrcB
Use A as the first ALU operand1ALUSrcA

DescriptionValueSignal

Use ALUOut as the memory address0IorD
Write to the memory0

DescriptionValueSignal
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Executing a lw instruction

Finally, lw is the most complex instruction, requiring five stages.
The first two are like all the other instructions.
— Stage 1: instruction fetch and PC increment.
— Stage 2: register fetch and branch target computation.

The third stage is the same as for sw, since we have to compute an 
effective memory address in both cases.
— Stage 3: compute the effective memory address.
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Stages 4-5 (lw): memory read and register write

Stage 4 is to read from the effective memory address, and to store the 
value in the intermediate register MDR (memory data register).

MDR = Mem[ALUOut]

Stage 5 stores the contents of MDR into the destination register.

Reg[IR[20-16]] = MDR

Remember that the destination register for lw is field rt (bits 20-16) and 
not field rd (bits 15-11).
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Stage 4 (lw): memory read
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Stage 5 (lw): register write
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Stages 4-5 (lw) control signals

Stage 4 (memory read): MDR = Mem[ALUOut]

The memory contents will be automatically written to MDR.

Stage 5 (writeback): Reg[IR[20-16]] = MDR

Use ALUOut as the memory address1IorD
Read from memory1MemRead

DescriptionValueSignal

Write data from MDR (from memory)1MemToReg
Use field rt as the destination register0RegDst
Store new data in the register file1RegWrite

DescriptionValueSignal
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Multicycle control unit

The control unit is responsible for producing all of these control signals.
Each instruction requires a sequence of control signals, generated over 
multiple clock cycles.
— This implies that we need a state machine.
— The datapath control signals will be outputs of the state machine.

Different instructions require different sequences of steps.
— This implies the instruction word is an input to the state machine.
— The next state depends upon the exact instruction being executed.

After we finish executing one instruction, we’ll have to repeat the entire 
process again to execute the next instruction.
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Finite-state machine for the control unit
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Implementing the FSM

This can be translated into a state table; here are the first two states.

You can implement this the hard way.
— Represent the current state using flip-flops or a register.
— Find equations for the next state and (control signal) outputs in terms 

of the current state and input (instruction word).
Or you can use the easy way.
— Stick the whole state table into a memory, like a ROM or a PLA.
— This would be much easier, since you don’t have to derive equations.
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Summary

Generating control signals for the multicycle datapath is complicated!
— Each instruction takes several cycles to execute.
— Different instructions require different control signals and a different 

number of cycles. 
— We have to provide the control signals in the right sequence.

Next time we’ll finish talking about the multicycle processor.
— Microprogramming is another way to implement control units.
— We’ll also examine the performance of this multicycle approach.
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