
March 3, 2003 ©2001-2003 Howard Huang 1

A single-cycle MIPS processor

An instruction set architecture is an interface that defines the hardware
operations which are available to software.
Any instruction set can be implemented in many different ways. Over the
next few weeks we’ll see several possibilities.
— In a basic single-cycle implementation all operations take the same

amount of time—a single cycle.
— A multicycle implementation allows faster operations to take less

time than slower ones, so overall performance can be increased.
— Finally, pipelining lets a processor overlap the execution of several

instructions, potentially leading to big performance gains.

March 3, 2003 A single-cycle MIPS processor 2

Single-cycle implementation

We will implement a simple MIPS-based instruction set supporting just the
following operations.

Today we’ll build a single-cycle implementation of this instruction set.
— All instructions will execute in the same amount of time; this will

determine the clock cycle time for our performance equations.
— We’ll explain the datapath first, and then make the control unit.

beqControl:

swlwData Transfer:

sltorandsubaddArithmetic:

March 3, 2003 A single-cycle MIPS processor 3

Computers are state machines

A computer is just a big fancy state machine.
— Registers, memory, hard disks and other storage form the state.
— The processor keeps reading and updating the state, according to the

instructions in some program.
Theory classes like CS375 explicitly model computers as state machines or
finite automata.

State

CPU

March 3, 2003 A single-cycle MIPS processor 4

John von Neumann

In the old days, “programming” involved actually changing a machine’s
physical configuration by flipping switches or connecting wires.
— A computer could run just one program at a time.
— Memory only stored data that was being operated on.

Then around 1944, John von Neumann and others got the idea to encode
instructions in a format that could be stored in memory just like data.
— The processor interprets and executes instructions from memory.
— One machine could perform many different tasks, just by loading

different programs into memory.
— The “stored program” design is often called a Von Neumann machine.

March 3, 2003 A single-cycle MIPS processor 5

Alan Turing

Even before this, in 1936, there was a man called Alan Turing.
— He created “universal Turing machines,” essentially programmable

state machines, that are still used as a model of computation.
— Turing got much of the credit for breaking Enigma, a famous German

secret code machine from World War II.
— He invented the Turing test for artificial intelligence: a machine is

intelligent if it can carry on a conversation as well as a human can.
Go ahead, ask me about the apples.

March 3, 2003 A single-cycle MIPS processor 6

Memories

It’s easier to use a Harvard architecture at first, with
programs and data stored in separate memories.
The dark lines here represent 32-bit values, so these
are 232 × 32 memories.
Blue lines represent control signals. MemRead and
MemWrite should be set to 1 if the data memory is to
be read or written respectively, and 0 otherwise.
You cannot write to the instruction memory.
— We’ll assume it’s already loaded with a program,

which doesn’t change while it’s running.
— In modern machines, programs are stored in the

“text segment” of memory, which can be written
to only by the operating system.

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

Read
address

Instruction
memory

Instruction
[31-0]

March 3, 2003 A single-cycle MIPS processor 7

Instruction fetching

The CPU is always in an infinite loop, fetching
instructions from memory and executing them.
The program counter or PC register holds the
address of the current instruction.
MIPS instructions are each four bytes long, so
the PC should be incremented by four to read
the next instruction in sequence.

Read
address

Instruction
memory

Instruction
[31-0]

PC

Add

4

March 3, 2003 A single-cycle MIPS processor 8

Encoding R-type instructions

A few weeks ago, we saw encodings of MIPS instructions as 32-bit values.
Register-to-register arithmetic instructions use the R-type format.
— op is the instruction opcode, and func specifies a particular arithmetic

operation (see the back of the textbook).
— rs, rt and rd are source and destination registers.

An example instruction and its encoding:

add $s4, $t1, $t2

6 bits5 bits5 bits5 bits5 bits6 bits

funcshamtrdrtrsop

100000000000101000101001001000000

March 3, 2003 A single-cycle MIPS processor 9

Registers and ALUs

R-type instructions must access registers and an ALU.

Our register file stores thirty-two 32-bit values.
— Each register specifier is 5 bits long.
— You can read from two registers at a time.
— RegWrite is 1 if a register should be written.

Our simple ALU from Lecture 8 has five operations,
selected by a 3-bit control signal ALUOp.

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

ALU

ALUOp

slt111
subtract 110

add010
or001

and000

FunctionALUOp

March 3, 2003 A single-cycle MIPS processor 10

Executing an R-type instruction

1. Read an instruction from the instruction memory.
2. The source registers, specified by instruction fields rs and rt, should be

read from the register file.
3. The ALU performs the desired operation.
4. Its result is stored in the destination register, which is specified by field

rd of the instruction word.

Read
address

Instruction
memory

Instruction
[31-0]

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

I [20 - 16]

I [15 - 11]

Result

Zero
ALU

ALUOp

I [25 - 21]

5 010 615 1120 1625 2131 26

funcshamtrdrtrsop

March 3, 2003 A single-cycle MIPS processor 11

Encoding I-type instructions

The lw, sw and beq instructions all use the I-type encoding.
— rt is the destination for lw, but a source for beq and sw.
— address is a 16-bit signed constant.

Two example instructions:

lw $t0, –4($sp)

sw $a0, 16($sp)

16 bits5 bits5 bits6 bits

addressrtrsop

1111 1111 1111 11000100011101100011

0000 0000 0001 00000010011101101011

March 3, 2003 A single-cycle MIPS processor 12

Accessing data memory

For an instruction like lw $t0, –4($sp), the base register $sp is added to
the sign-extended constant to get a data memory address.
This means the ALU must accept either a register operand for arithmetic
instructions, or a sign-extended immediate operand for lw and sw.
We’ll add a multiplexer, controlled by ALUSrc, to select either a register
operand (0) or a constant operand (1).

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg
Read
address

Instruction
memory

Instruction
[31-0]

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

March 3, 2003 A single-cycle MIPS processor 13

MemToReg

The register file’s “Write data” input has a similar problem. It must be
able to store either the ALU output of R-type instructions, or the data
memory output for lw.
We add a mux, controlled by MemToReg, to select between saving the
ALU result (0) or the data memory output (1) to the registers.

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg
Read
address

Instruction
memory

Instruction
[31-0]

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

March 3, 2003 A single-cycle MIPS processor 14

RegDst

A final annoyance is the destination register of lw is in rt instead of rd.

We’ll add one more mux, controlled by RegDst, to select the destination
register from either instruction field rt (0) or field rd (1).

lw $rt, address($rs)

addressrtrsop

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg
Read
address

Instruction
memory

Instruction
[31-0]

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

March 3, 2003 A single-cycle MIPS processor 15

Branches

For branch instructions, the constant is not an address but an instruction
offset from the current program counter to the desired address.

beq $at, $0, L
add $v1, $v0, $0
add $v1, $v1, $v1
j Somewhere

L: add $v1, $v0, $v0

The target address L is three instructions past the beq, so the encoding of
the branch instruction has 0000 0000 0000 0011 for the address field.

Instructions are four bytes long, so the actual memory offset is 12 bytes.

addressrtrsop

0000 0000 0000 00110000000001000100

March 3, 2003 A single-cycle MIPS processor 16

The steps in executing a beq

1. Fetch the instruction, like beq $at, $0, offset, from memory.
2. Read the source registers, $at and $0, from the register file.
3. Compare the values by subtracting them in the ALU.
4. If the subtraction result is 0, the source operands were equal and the PC

should be loaded with the target address, PC + 4 + (offset × 4).
5. Otherwise the branch should not be taken, and the PC should just be

incremented to PC + 4 to fetch the next instruction sequentially.

March 3, 2003 A single-cycle MIPS processor 17

Branching hardware

We need a second adder, since the ALU
is already doing subtraction for the beq.

Multiply constant
by 4 to get offset.

PCSrc=1 branches
to PC+4+(offset×4).
PCSrc=0 continues
to PC+4.4

Shift
left 2

PC Add

Add

0
M
u
x
1

PCSrc

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg
Read
address

Instruction
memory

Instruction
[31-0]

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

March 3, 2003 A single-cycle MIPS processor 18

The final datapath

4

Shift
left 2

PC Add

Add

0
M
u
x
1

PCSrc

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg
Read
address

Instruction
memory

Instruction
[31-0]

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

March 3, 2003 A single-cycle MIPS processor 19

Control

The control unit is responsible for setting all the control signals so that
each instruction is executed properly.
— The control unit’s input is the 32-bit instruction word.
— The outputs are values for the blue control signals in the datapath.

Most of the signals can be generated from the instruction opcode alone,
and not the entire 32-bit word.
To illustrate the relevant control signals, we will show the route that is
taken through the datapath by R-type, lw, sw and beq instructions.

March 3, 2003 A single-cycle MIPS processor 20

R-type instruction path

The R-type instructions include add, sub, and, or, and slt.
The ALUOp is determined by the instruction’s “func” field.

I [15 - 11]

4

Shift
left 2

PC Add

Add

0
M
u
x
1

PCSrc

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg
Read
address

Instruction
memory

Instruction
[31-0]

I [15 - 0]

I [25 - 21]

I [20 - 16]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

March 3, 2003 A single-cycle MIPS processor 21

lw instruction path

An example load instruction is lw $t0, –4($sp).
The ALUOp must be 010 (add), to compute the effective address.

I [15 - 11]

4

Shift
left 2

PC Add

Add

0
M
u
x
1

PCSrc

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg
Read
address

Instruction
memory

Instruction
[31-0]

I [15 - 0]

I [25 - 21]

I [20 - 16]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

March 3, 2003 A single-cycle MIPS processor 22

sw instruction path

An example store instruction is sw $a0, 16($sp).
The ALUOp must be 010 (add), again to compute the effective address.

I [15 - 11]

4

Shift
left 2

PC Add

Add

0
M
u
x
1

PCSrc

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg
Read
address

Instruction
memory

Instruction
[31-0]

I [15 - 0]

I [25 - 21]

I [20 - 16]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

March 3, 2003 A single-cycle MIPS processor 23

beq instruction path

One sample branch instruction is beq $at, $0, offset.
The ALUOp is 110 (subtract), to test for equality. The branch may

or may not be
taken, depending
on the ALU’s Zero

output

I [15 - 11]

4

Shift
left 2

PC Add

Add

0
M
u
x
1

PCSrc

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg
Read
address

Instruction
memory

Instruction
[31-0]

I [15 - 0]

I [25 - 21]

I [20 - 16]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

March 3, 2003 A single-cycle MIPS processor 24

Control signal table

sw and beq are the only instructions that do not write any registers.
lw and sw are the only instructions that use the constant field. They also
depend on the ALU to compute the effective memory address.
ALUOp for R-type instructions depends on the instructions’ func field.
The PCSrc control signal (not listed) should be set if the instruction is beq
and the ALU’s Zero output is true.

X0011000Xbeq

X0101010Xsw

110010110lw

000111011slt

000001011or

000000011and

000110011sub

000010011add

MemToRegMemReadMemWriteALUOpALUSrcRegWriteRegDstOperation

March 3, 2003 A single-cycle MIPS processor 25

Generating control signals

The control unit needs 13 bits of inputs.
— Six bits make up the instruction’s opcode.
— Six bits come from the instruction’s func field.
— It also needs the Zero output of the ALU.

The control unit generates 10 bits of output, corresponding to the signals
mentioned on the previous page.
You can build the actual circuit by using big K-maps, big Boolean algebra,
or big circuit design programs.
The textbook presents a slightly different control unit.

Read
address

Instruction
memory

Instruction
[31-0]

Control

I [31 - 26]

I [5 - 0]

RegWrite

ALUSrc

ALUOp

MemWrite

MemRead

MemToReg

RegDst

PCSrc

Zero

March 3, 2003 A single-cycle MIPS processor 26

Summary

A datapath contains all the functional units and connections necessary to
implement an instruction set architecture.
— For our single-cycle implementation, we use two separate memories,

an ALU, some extra adders, and lots of multiplexers.
— MIPS is a 32-bit machine, so most of the buses are 32-bits wide.

The control unit tells the datapath what to do, based on the instruction
that’s currently being executed.
— Our processor has ten control signals that regulate the datapath.
— The control signals can be generated by a combinational circuit with

the instruction’s 32-bit binary encoding as input.
On Wednesday we’ll see the performance limitations of this single-cycle
machine and try to improve upon it.

	A single-cycle MIPS processor
	Single-cycle implementation
	Computers are state machines
	John von Neumann
	Alan Turing
	Memories
	Instruction fetching
	Encoding R-type instructions
	Registers and ALUs
	Executing an R-type instruction
	Encoding I-type instructions
	Accessing data memory
	MemToReg
	RegDst
	Branches
	The steps in executing a beq
	Branching hardware
	The final datapath
	Control
	R-type instruction path
	lw instruction path
	sw instruction path
	beq instruction path
	Control signal table
	Generating control signals
	Summary

		hhuang@cs.uiuc.edu
	2003-08-22T02:29:03-0500
	Urbana, Illinois
	Howard Huang
	I am the author of this document

