
February 26, 2003 ©2001-2003 Howard Huang 1

MIPS floating-point arithmetic

Floating-point computations are vital for many applications, but correct
implementation of floating-point hardware and software is very tricky.
Today we’ll study the IEEE 754 standard for floating-point arithmetic.
— Floating-point number representations are complex, but limited.
— Addition and multiplication operations require several steps.
— The MIPS architecture includes support for floating-point arithmetic.

Machine Problem 2 will include some floating-point programming in MIPS.
Sections this week will review the last three lectures on arithmetic.

February 26, 2003 MIPS floating-point arithmetic 2

Floating-point representation

IEEE numbers are stored using a kind of scientific notation.

± mantissa × 2exponent

We can represent floating-point numbers with three binary fields: a sign
bit s, an exponent field e, and a fraction field f.

The IEEE 754 standard defines several different precisions.
— Single precision numbers include an 8-bit exponent field and a 23-bit

fraction, for a total of 32 bits.
— Double precision numbers have an 11-bit exponent field and a 52-bit

fraction, for a total of 64 bits.
There are also various extended precision formats. For example, Intel
processors use an 80-bit format internally.

fes

February 26, 2003 MIPS floating-point arithmetic 3

Sign

The sign bit is 0 for positive numbers and 1 for negative numbers.
But unlike integers, IEEE values are stored in signed magnitude format.

fes

February 26, 2003 MIPS floating-point arithmetic 4

Mantissa

The field f contains a binary fraction.
The actual mantissa of the floating-point value is (1 + f).
— In other words, there is an implicit 1 to the left of the binary point.
— For example, if f is 01101…, the mantissa would be 1.01101…

There are many ways to write a number in scientific notation, but there
is always a unique normalized representation, with exactly one non-zero
digit to the left of the point.

0.232 × 103 = 23.2 × 101 = 2.32 × 102 = …

A side effect is that we get a little more precision: there are 24 bits in
the mantissa, but we only need to store 23 of them.

fes

February 26, 2003 MIPS floating-point arithmetic 5

Exponent

The e field represents the exponent as a biased number.
— It contains the actual exponent plus 127 for single precision, or the

actual exponent plus 1023 in double precision.
— This converts all single-precision exponents from -127 to +127 into

unsigned numbers from 0 to 255, and all double-precision exponents
from -1024 to +1023 into unsigned numbers from 0 to 2047.

Two examples with single-precision numbers are shown below.
— If the exponent is 4, the e field will be 4 + 127 = 131 (100000112).
— If e contains 01011101 (9310), the actual exponent is 93 - 127 = -34.

Storing a biased exponent before a normalized mantissa means we can
compare IEEE values as if they were signed integers.

fes

February 26, 2003 MIPS floating-point arithmetic 6

Converting an IEEE 754 number to decimal

The decimal value of an IEEE number is given by the formula:

(1 - 2s) × (1 + f) × 2e-bias

Here, the s, f and e fields are assumed to be in decimal.
— (1 - 2s) is 1 or -1, depending on whether the sign bit is 0 or 1.
— We add an implicit 1 to the fraction field f, as mentioned earlier.
— Again, the bias is either 127 or 1023, for single or double precision.

fes

February 26, 2003 MIPS floating-point arithmetic 7

Example IEEE-decimal conversion

Let’s find the decimal value of the following IEEE number.

1 01111100 11000000000000000000000

First convert each individual field to decimal.
— The sign bit s is 1.
— The e field contains 01111100 = 12410.
— The mantissa is 0.11000… = 0.7510.

Then just plug these decimal values of s, e and f into our formula.

(1 - 2s) × (1 + f) × 2e-bias

This gives us (1 - 2) × (1 + 0.75) × 2124-127 = (-1.75 × 2-3) = -0.21875.

February 26, 2003 MIPS floating-point arithmetic 8

Converting a decimal number to IEEE 754

What is the single-precision representation of 347.625?

1. First convert the number to binary: 347.625 = 101011011.1012.
2. Normalize the number by shifting the binary point until there is a

single 1 to the left:

101011011.101 × 20 = 1.01011011101 × 28

3. The bits to the right of the binary point, 010110111012, comprise the
fractional field f.

4. The number of times you shifted gives the exponent. In this case, the
field e should contain 8 + 127 = 135 = 100001112.

5. The number is positive, so the sign bit is 0.

The final result is:

0 10000111 01011011101000000000000

February 26, 2003 MIPS floating-point arithmetic 9

Special values

The smallest and largest possible exponents e=00000000 and e=11111111
(and their double precision counterparts) are reserved for special values.
If the mantissa is always (1 + f), then how is 0 represented?
— The fraction field f should be 0000...0000.
— The exponent field e contains the value 00000000.
— With signed magnitude, there are two zeroes: +0.0 and -0.0.

There are representations of positive and negative infinity, which might
sometimes help with instances of overflow.
— The fraction f is 0000...0000.
— The exponent field e is set to 11111111.

Finally, there is a special “not a number” value, which can handle some
cases of errors or invalid operations such as 0.0⁄0.0.
— The fraction field f is set to any non-zero value.
— The exponent e will contain 11111111.

February 26, 2003 MIPS floating-point arithmetic 10

Range of single-precision numbers

(1 - 2s) × (1 + f) × 2e-127.

The largest possible “normal” number is (2 - 2-23) × 2127 = 2128 - 2104.
— The largest possible e is 11111110 (254).
— The largest possible f is 11111111111111111111111 (1 - 2-23).

And the smallest positive non-zero number is 1 × 2-126 = 2-126.
— The smallest e is 00000001 (1).
— The smallest f is 00000000000000000000000 (0).

In comparison, the smallest and largest possible 32-bit integers in two’s
complement are only -231 and 231 - 1
How can we represent so many more values in the IEEE 754 format, even
though we use the same number of bits as regular integers?

February 26, 2003 MIPS floating-point arithmetic 11

Finiteness

There aren’t more IEEE numbers.
With 32 bits, there are 232-1, or about 4 billion, different bit patterns.
— These can represent 4 billion integers or 4 billion reals.
— But there are an infinite number of reals, and the IEEE format can only

represent some of the ones from about -2128 to +2128.
This causes enormous headaches in doing floating-point arithmetic.
— Not all values between -2128 to +2128 can be represented.
— Small roundoff errors can quickly accumulate with multiplications or

exponentiations, resulting in big errors.
— Rounding errors can invalidate many basic arithmetic principles such

as the associative law, (x + y) + z = x + (y + z).
The IEEE 754 standard guarantees that all machines will produce the same
results—but those results may not be mathematically correct!

February 26, 2003 MIPS floating-point arithmetic 12

Limits of the IEEE representation

Even some integers cannot be represented in the IEEE format.

int x = 33554431;
float y = 33554431;
printf("%d\n", x);
printf("%f\n", y);

Some simple decimal numbers cannot be represented exactly in binary to
begin with.

0.1010 = 0.0001100110011...2

February 26, 2003 MIPS floating-point arithmetic 13

0.10

During the Gulf War in 1991, a U.S. Patriot missile failed to intercept an
Iraqi Scud missile, and 28 Americans were killed.
A later study determined that the problem was caused by the inaccuracy
of the binary representation of 0.10.
— The Patriot incremented a counter once every 0.10 seconds.
— It multiplied the counter value by 0.10 to compute the actual time.

However, the (24-bit) binary representation of 0.10 actually corresponds
to 0.099999904632568359375, which is off by 0.000000095367431640625.
This doesn’t seem like much, but after 100 hours the time ends up being
off by 0.34 seconds—enough time for a Scud to travel 500 meters!
Professor Skeel wrote a short article about this.

Roundoff Error and the Patriot Missile. SIAM News, 25(4):11, July 1992.

http://www.siam.org/siamnews/general/patriot.htm
http://www.siam.org/siamnews/general/patriot.htm

February 26, 2003 MIPS floating-point arithmetic 14

Floating-point addition example

To get a feel for floating-point operations, we’ll do an addition example.
— To keep it simple, we’ll use base 10 scientific notation.
— Assume the mantissa has four digits, and the exponent has one digit.

The text shows an example for the addition:

99.99 + 0.161 = 100.151

As normalized numbers, the operands would be written as:

9.999 × 101 1.610 × 10-1

February 26, 2003 MIPS floating-point arithmetic 15

Steps 1-2: the actual addition

1. Equalize the exponents.
The operand with the smaller exponent should be rewritten by increasing
its exponent and shifting the point leftwards.

1.610 × 10-1 = 0.0161 × 101

With four significant digits, this gets rounded to 0.016 × 101.

This can result in a loss of least significant digits—the rightmost 1 in this
case. But rewriting the number with the larger exponent could result in
loss of the most significant digits, which is much worse.

2. Add the mantissas.

101×10.015

101×0.016+

101×9.999

February 26, 2003 MIPS floating-point arithmetic 16

Steps 3-5: representing the result

3. Normalize the result if necessary.

10.015 × 101 = 1.0015 × 102

This step may cause the point to shift either left or right, and the
exponent to either increase or decrease.

4. Round the number if needed.

1.0015 × 102 gets rounded to 1.002 × 102.

5. Repeat Step 3 if the result is no longer normalized.
We don’t need this in our example, but it’s possible for rounding to add
digits—for example, rounding 9.9995 yields 10.000.

Our result is 1.002 × 102, or 100.2. The correct answer is 100.151, so we have
the right answer to four significant digits, but there’s a small error already.

February 26, 2003 MIPS floating-point arithmetic 17

Extreme errors

As we saw, rounding errors in addition can occur if one argument is much
smaller than the other, since we need to match the exponents.
An extreme example with 32-bit IEEE values is the following.

(1.5 × 1038) + (1.0 × 100) = 1.5 × 1038

The number 1.0 × 100 is much smaller than 1.5 × 1038, and it basically gets
rounded out of existence.
This has some nasty implications. The order in which you do additions can
affect the result, so (x + y) + z is not always the same as x + (y + z)!

float x = -1.5e38;
float y = 1.5e38;
printf(“%f\n”, (x + y) + 1.0);
printf(“%f\n”, x + (y + 1.0));

February 26, 2003 MIPS floating-point arithmetic 18

Multiplication

To multiply two floating-point values, first multiply their magnitudes and
add their exponents.

You can then round and normalize the result, yielding 1.610 × 101.
The sign of the product is the exclusive-or of the signs of the operands.
— If two numbers have the same sign, their product is positive.
— If two numbers have different signs, the product is negative.

0 ⊕ 0 = 0 0 ⊕ 1 = 1 1 ⊕ 0 = 1 1 ⊕ 1 = 0

This is one of the main advantages of using signed magnitude.

100×16.098

10-1×1.610×

101×9.999

February 26, 2003 MIPS floating-point arithmetic 19

The history of floating-point computation

In the past, each machine had its own implementation of floating-point
arithmetic hardware and/or software.
— It was impossible to write portable programs that would produce the

same results on different systems.
— Many strange tricks were needed to get correct answers out of some

machines, such as Crays or the IBM System 370.
It wasn’t until 1985 that the IEEE 754 standard was adopted.
— The standard is very complex and difficult to implement efficiently.
— But having a standard at least ensures that all compliant machines will

produce the same outputs for the same program.

February 26, 2003 MIPS floating-point arithmetic 20

Floating-point hardware

Intel introduced the 8087 coprocessor around 1981.
— The main CPU would call the 8087 for floating-point operations.
— The 8087 had eight separate 80-bit floating-point registers that could

be accessed in a stack-like fashion.
— Some of the IEEE standard is based on the 8087.

Intel’s 80486, introduced in 1989, included floating-point support in the
main processor itself.
The MIPS floating-point architecture and instruction set still reflect the
old coprocessor days, with separate floating-point registers and special
instructions for accessing those registers.

February 26, 2003 MIPS floating-point arithmetic 21

MIPS floating-point architecture

MIPS includes a separate set of 32 floating-point registers, $f0-$f31.
— Each register is 32 bits long and can hold a single-precision value.
— Two registers can be combined to store a double-precision number.

You can have up to 16 double-precision values in registers $f0-$f1,
$f2-$f3, ..., $f30-$f31.

— $f0 is not hardwired to the value 0.0!
There are also separate instructions for floating-point arithmetic. The
operands must be floating-point registers, and not immediate values.

add.s $f1, $f2, $f3 # Single-precision $f1 = $f2 + $f3
add.d $f2, $f4, $f6 # Double-precision $f2 = $f4 + $f6

There are other basic operations as you would expect.
— sub.s and sub.d for subtraction
— mul.s and mul.d for multiplication
— div.s and div.d for division

February 26, 2003 MIPS floating-point arithmetic 22

Floating-point register transfers

mov.s and mov.d copy data between floating-point registers.
Use mtc1 and mfc1 to transfer data between the integer registers $0-$31
and the floating-point registers $f0-$f31.
— These are “raw” data transfers that do not convert between integer

and floating-point representations.
— Be careful with the order of the operands in these instructions.

mtc1 $t0, $f0 # $f0 = $t0
mfc1 $t0, $f0 # $t0 = $f0

There are also special loads and stores for transferring data between the
floating-point registers and memory. (The base address is still given in an
integer register.)

lwc1 $f2, 0($a0) # $f2 = M[$a0]
swc1 $f4, 4($sp) # M[$sp+4] = $f4

The “c1” in the instruction names stands for “coprocessor 1.”

February 26, 2003 MIPS floating-point arithmetic 23

Floating-point comparisons

We also need special instructions for comparing floating-point values,
since slt and sltu only apply to signed and unsigned integers.

c.le.s $f2, $f4
c.eq.s $f2, $f4
c.lt.s $f2, $f4

The comparison result is stored in a special coprocessor register.
You can then branch based on whether this register contains 1 or 0.

bc1t Label # branch if true
bc1f Label # branch if false

Here is how you can branch to the label Exit if $f2 = $f4.

c.eq.s $f2, $f4
bc1t Exit

February 26, 2003 MIPS floating-point arithmetic 24

Floating-point functions

There are conventions for passing data to and from functions.
— Floating-point arguments are placed in $f12-$f15.
— Floating-point return values go into $f0-$f1.

We also split the register-saving chores, just like earlier.
— $f0-$f19 are caller-saved.
— $f20-$f31 are callee-saved.

These are the same basic ideas as before because we still have the same
problems to solve—now it’s just with different registers.

February 26, 2003 MIPS floating-point arithmetic 25

Floating-point constants

MIPS does not support immediate floating-point arithmetic instructions,
so you must load constant values into a floating-point register first.
One solution is to store floating-point constants in the data segment, and
to load them with a l.s or l.d pseudo-instruction.

.data
alpha: .float 0.55555 # 5.0 / 9.0

.text
l.s $f6, alpha # $f6 = 0.55555

Newer versions of SPIM also support the li.s and li.d pseudo-instructions,
which make life much easier.

li.s $f6, 0.55555 # $f6 = 0.55555

February 26, 2003 MIPS floating-point arithmetic 26

Type conversions

You can also cast integers to floating-point values using the MIPS type
conversion instructions.

Possible types for conversions are integers (w), single-precision (s) and
double-precision (d) floating-point.

li $t0, 32 # $t0 = 32
mtc1 $t0, $f2 # $f2 = 32
cvt.s.w $f4, $f2 # $f4 = 32.0

cvt.s.w $f4, $f2

Type to
convert from

Type to
convert to

Floating-point
destination

Floating-point
source register

February 26, 2003 MIPS floating-point arithmetic 27

A complete example

Here is a slightly different version of the textbook example of converting
single-precision temperatures from Fahrenheit to Celsius.

celsius = (fahrenheit - 32.0) × 5.0 ⁄ 9.0

celsius:
li $t0, 32
mtc1 $t0, $f4
cvt.s.w $f4, $f4 # $f4 = 32.0
li.s $f6, 0.55555 # $f6 = 5.0 / 9.0
sub.s $f0, $f12, $f4 # $f0 = $f12 - 32.0
mul.s $f0, $f0, $f6 # $f0 = $f0 * 5.0/9.0
jr $ra

This example demonstrates a couple of things.
— The argument is passed in $f12, and the return value is placed in $f0.
— We use two different ways of loading floating-point constants.
— We used only caller-saved floating-point registers.

February 26, 2003 MIPS floating-point arithmetic 28

Summary

The IEEE 754 standard defines number representations and operations for
floating-point arithmetic.
Having a finite number of bits means we can’t represent all possible real
numbers, and errors will occur from approximations.
MIPS processors implement the IEEE 754 standard.
— There is a separate set of floating-point registers, $f0-$f31.
— New instructions handle basic floating-point operations, comparisons

and branches. There is also support for transferring data between the
floating-point registers, main memory and the integer registers.

— We still have to deal with issues of argument and result passing, and
register saving and restoring in function calls.

	MIPS floating-point arithmetic
	Floating-point representation
	Sign
	Mantissa
	Exponent
	Converting an IEEE 754 number to decimal
	Example IEEE-decimal conversion
	Converting a decimal number to IEEE 754
	Special values
	Range of single-precision numbers
	Finiteness
	Limits of the IEEE representation
	0.10
	Floating-point addition example
	Steps 1-2: the actual addition
	Steps 3-5: representing the result
	Extreme errors
	Multiplication
	The history of floating-point computation
	Floating-point hardware
	MIPS floating-point architecture
	Floating-point register transfers
	Floating-point comparisons
	Floating-point functions
	Floating-point constants
	Type conversions
	A complete example
	Summary

		hhuang@cs.uiuc.edu
	2003-08-22T02:24:09-0500
	Urbana, Illinois
	Howard Huang
	I am the author of this document

