
February 17, 2003 ©2001-2003 Howard Huang 1

MIPS arithmetic

Today we’ll review all the important ideas of arithmetic from CS231.
— Unsigned and signed number representations.
— Addition and subtraction with two’s complement numbers.
— Overflow detection.

These issues are important in understanding MIPS arithmetic instructions.
Finally, we review the construction of an ALU that will appear in our CPU
designs in the next few weeks.

February 17, 2003 MIPS arithmetic 2

Unsigned numbers

We can store unsigned numbers as their binary equivalents.
Bit position i has a decimal weight 2i, so the decimal value v of an n-bit
unsigned binary number an–1an–2...a1a0 can be calculated as below.

This is just the sum of each digit times the weight of its position.

1 0 1 1 0 12 = (25•1) + (24•0) + (23•1) + (22•1) + (21•0) + (20•1) = 4510

The smallest and largest possible numbers are 0 and 2n–1.
In MIPS, the largest unsigned number is 232–1, or about 4.3 billion.

∑
−

=

⋅=
1

0
2

n

i
i

i av

February 17, 2003 MIPS arithmetic 3

Hexadecimal notation

Hexadecimal is frequently used as a shorthand for binary
numbers, because one hex digit corresponds to four bits.
Converting between binary and hex is easy with a table.

B E E F16 = 1011 1110 1110 11112

In SPIM and many high-level programming languages, the
prefix 0x denotes a hexadecimal constant, as in 0xBEEF.

F1111
E1110
D1101
C1100
B1011
A1010
91001
81000
70111
60110
50101
40100
30011
20010
10001
00000

HexBinary

Moo.

February 17, 2003 MIPS arithmetic 4

Working with unsigned numbers

Addition can be done just like in decimal.

Multiplication and integer division by powers of 2 can be done using left
and right “logical” shifts.

1 0 1 1 0 1 × 10 = 1 0 1 1 0 1 0 45 × 2 = 90
1 0 1 1 0 1 ⁄ 10 = 0 1 0 1 1 0 45 ⁄ 2 = 22

680010001

23+111010+

45101101

11111

February 17, 2003 MIPS arithmetic 5

Logical shifts in MIPS

MIPS has sll (shift left logical) and srl (shift right logical) instructions.
— A constant specifies the number of bits to shift, from 0 to 31.
— 0s are shifted into the right or left sides, respectively.

For example, assume that $t0 contains 0xFEEDBEEF.

sll $t1, $t0, 4 # $t1 contains 0xEEDBEEF0

srl $t2, $t0, 12 # $t2 contains 0x000FEEDB

Shifts are actually R-type instructions, not I-type!

The constant is stored in the 5-bit “shamt” field that we hadn’t seen up
until now.

6 bits5 bits5 bits5 bits5 bits6 bits

funcshamtrdrtrsop

February 17, 2003 MIPS arithmetic 6

Unsigned overflow

One recurring issue in computer arithmetic is dealing with finite amounts
of storage, such as 32-bit MIPS registers.
Overflow occurs when the result of an operation is too large to be stored.
There are many examples of unsigned n-bit overflows.
— When there is a carry out of position n–1 in an addition.
— When an–1 is 1 in a multiplication by two.

The 6-bit addition and multiplication operations on page 4 both result in
overflow, since the correct answers require 7 bits.

February 17, 2003 MIPS arithmetic 7

Signed two’s-complement numbers

Signed numbers are represented in two’s complement format.
The most significant bit an–1 of each number is a sign bit.
— 0 indicates a positive number.
— 1 indicates a negative number.

The range of n-bit signed numbers is from –2n–1 to +2n–1–1
— For 32-bit values, the range is roughly ±2.15 billion.
— The ranges are not exactly even since there are 2n–1 negative numbers,

but just 2n–1–1 positive numbers.

February 17, 2003 MIPS arithmetic 8

Two’s-complement values

The magnitude of a negative number is represented in a funny way that
makes x + –x = 2n for all numbers x.
The decimal value v of a two’s-complement number an–1an–2...a1a0 is:

Here are two examples with n = 6.

010111 = (–25•0) + (24•1) + (23•0) + (22•1) + (21•1) + (20•1) = 23
101101 = (–25•1) + (24•0) + (23•1) + (22•1) + (21•0) + (20•1) = –19

() 






 ⋅+⋅−= ∑
−

=
−

−
2

0
1

1 22
n

i
i

i
n

n aav

This term accounts
for the sign.

The magnitude is
computed like before.

February 17, 2003 MIPS arithmetic 9

Negating a two’s complement number

There are three main ways to negate two’s complement numbers. As an
example, let’s consider the six-bit value 101101 (–19).

1. Complement all the bits in the number and then add 1.
— Complementing the bits in 101101 yields 010010.
— Adding 1 results in 010011 (+19).

2. Complement the bits to the left of the rightmost 1.
— The rightmost 1 in 101101 is in position 0.
— Complementing the bits to its left gives 010011 (+19).

3. Subtract the number from 2n.
— 26 is 1000000.
— Then, 1000000 – 101101 = 010011 (+19).

February 17, 2003 MIPS arithmetic 10

Two’s-complement numbers with n=4

1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

2C

–1
–2
–3
–4
–5
–6
–7
–8
7
6
5
4
3
2
1
0

Decimal

01117
01106
01015
01004
00113
00102
00011
00000
1111–1
1110–2
1101–3
1100–4
1011–5
1010–6
1001–7
1000–8

2CDecimal

February 17, 2003 MIPS arithmetic 11

Working with signed numbers

Addition with two’s complement is the same as with unsigned numbers.
— The sign bits are included in the addition.
— The carry out is ignored.

A subtraction operation A – B is treated as an addition of A + (–B).

40010001

23+111010+

–19101101

11111

February 17, 2003 MIPS arithmetic 12

Signed overflow

It’s also possible for two’s-complement operations to overflow.
Overflow occurs only when we add two numbers of the same sign and get
a different sign for the result.
— Adding two positive numbers should result in a positive number.
— Adding two negative numbers should yield a negative result.

– 220101010

+23+111010+

+19110010

11101

+ 220110101

– 23+100101+

– 19101101

10010

February 17, 2003 MIPS arithmetic 13

Ariane 5

In 1996, the European Space Agency’s Ariane 5 rocket was launched for
the first time... and it exploded 40 seconds after liftoff.
It turns out the Ariane 5 used software designed for the older Ariane 4.
— The Ariane 4 stored its horizontal velocity as a 16-bit signed integer.
— But the Ariane 5 reaches a much higher velocity, which caused an

overflow in the 16-bit quantity.
The overflow error was never caught, so incorrect instructions were sent
to the rocket boosters and main engine.

February 17, 2003 MIPS arithmetic 14

Sign extension

We often work with signed numbers of different lengths.
— Instructions like lw $t0, –4($sp) add 16-bit and 32-bit values together.
— slti $t0, $t0, 256 compares a 16-bit constant to a 32-bit number.
— The lb instruction copies an 8-bit value into a 32-bit register.

You can sign extend a two’s complement number by copying the sign bit.
For instance, we can sign extend 6-bit numbers to 8 bits.

(+23) 010111 00010111 (+23)

(–19) 101101 11101101 (–19)

If you add 0s instead of sign extending, you may accidentally change the
sign, and hence the value, of the result.

(–19) 101101 00101101 (+45)

February 17, 2003 MIPS arithmetic 15

Interpreting bit patterns

One of the most important things to remember is that bit patterns have
different meanings under different representations!
— As a six-bit unsigned number, 101101 denotes 45 in decimal.
— But as a two’s complement number, 101101 denotes –19.

The example C program below prints the same data (0xFFFFFFFF) twice,
but under different interpretations.

main() // CSIL Sun machines
{

int x = 0xFFFFFFFF; // 32-bit integers
printf("x = %d\n", x); // Signed; prints -1
printf("x = %u\n", x); // Unsigned; prints 4294967295

}

February 17, 2003 MIPS arithmetic 16

Signed and unsigned comparisons

Specifying the interpretation of binary numbers is especially important in
untyped assembly language programming.
For example, how does 111111 compare to 000000?
— As an unsigned number, 111111 = 63, which is greater than 0.
— As a two’s complement number, 111111 = –1, which is less than 0.

MIPS includes two versions of the comparison instructions.
— The slt and slti instructions that we saw do signed comparisons.
— The instructions sltu and sltiu perform unsigned comparisons.

main()

{

unsigned int u = 0xFFFFFFFF;

int s = 0xFFFFFFFF;

printf("%u is %s than 0\n", u, (u < 0 ? "less" : "greater"));

printf("%d is %s than 0\n", s, (s < 0 ? "less" : "greater"));

}

February 17, 2003 MIPS arithmetic 17

Signed and unsigned addition

MIPS provides two versions of the main arithmetic instructions.
— The add, addi and sub instructions will raise an exception if they

cause an overflow.
— But addu, addiu, and subu do not raise exceptions on overflow

Be careful! Both addi and addiu sign extend their constant field, even
though addiu is considered an “unsigned” operation.
In C, overflow exceptions may or may not be raised, depending on the
underlying hardware.

main() // CSIL Sun machines
{

int x = 0x7FFFFFFF; // Largest 32-bit number
printf("x = %d\n", x); // Prints 2147483647
x++;
printf("x = %d\n", x); // Prints -2147483648

}

February 17, 2003 MIPS arithmetic 18

When to use unsigned numbers

Memory addresses should be treated as unsigned numbers.
— The fourth element of an array that starts at 0x7FFFFFF0 is at address

0x80000000. This address computation should not overflow!
— In fact, stack pushes and pops should be performed using the unsigned

add and subtract instructions like addiu, and not addi.
Non-numeric data should also be handled using unsigned operations.
— We can represent up to 32 Boolean values with one MIPS word.
— Similarly, several fields of data can be packed into one word, such as

the encoding of MIPS instructions themselves!
The and and or instructions do bitwise manipulations on registers. The
immediate variants, andi and ori, do not sign extend their constants.

February 17, 2003 MIPS arithmetic 19

MIPS arithmetic instruction summary

Addition and subtraction
— add, addi, and sub raise exceptions on overflow.
— addu, addiu, and subu do not raise exceptions on overflow.
— addi and addiu both sign extend their immediate fields.

Comparisons
— slt and slti are for signed comparisons.
— sltu and sltiu do unsigned comparisons.
— slti and sltiu both sign extend their immediate fields.

Data transfers
— lb sign extends the byte that is loaded into a register.
— lbu does not sign extend the byte.

Shifting
— sll and srl are used for logical shifts of up to 31 bits.

Bitwise operators
— andi and ori do not sign extend their immediate field.

February 17, 2003 MIPS arithmetic 20

Hardware for single-bit operations

We can use a full adder to add data inputs a, b and a carry in cin. This
produces a one-bit result and a carry out cout.

It’s also easy to do one bit and and or operations.

a b

cin

result

cout +

a b

ab

a b

a+b

February 17, 2003 MIPS arithmetic 21

A one-bit ALU

A simple one-bit ALU can support all three
of these functions.
A two-bit input called operation selects the
desired function using a 3-to-1 multiplexer.

a + b + carry in2
a or b1

a and b0

resultoperation

carry in

carry out

a b

result

operation

+

2 1 0

February 17, 2003 MIPS arithmetic 22

An n-bit ALU

This one-bit ALU can be replicated to produce an n-bit ALU.
— The carry out from stage i connects to the carry in of stage i+1.
— The operation input is shared by all of the one-bit circuits.

carry
in

carry
out

a0 b0

result0

ALU

a1 b1

result1

ALU

a2 b2

result2

ALU

a3 b3

result3

ALU

operation

February 17, 2003 MIPS arithmetic 23

A whole MIPS ALU

We can do the subtraction of a – b by complementing the b input, setting
carry in to 1, and performing an addition.
The ALU also has a slt function, which sets result to 1 or 0 depending on
whether or not a is less than b. This can be determined via subtraction.
Finally, outputs can be generated to signal overflow or a result of zero.

32

32

32

3

ALU
operation

Result
Overflow

Zero

Carry Out

a

b
a < b111
a – b 110
a + b010
a or b001

a and b000

Result
ALU

operation

February 17, 2003 MIPS arithmetic 24

MIPS ALU design

ALUs are a good example of modular hardware design.
— 32 full adders can be connected together to form a 32-bit adder.
— Bitwise operations can also be handled one bit at a time.
— Adders can also be used to perform subtraction.

Shift operations are usually handled outside the ALU by a combinational
“barrel shifter” circuit, which can shift an arbitrary number of positions
in constant time.

February 17, 2003 MIPS arithmetic 25

Summary

Signed numbers are represented using the two’s complement format.
— A sign bit distinguishes between positive and negative numbers.
— Numbers are negated by complementing their bits and adding 1.
— This makes subtraction hardware easy to build.

Signed and unsigned numbers have many important differences.
— Some operations require that we sign extend the operands.
— Overflow detection differs for signed and unsigned operations.

The MIPS instruction set includes both signed and unsigned operations,
which affect how constant operands and overflows are handled.

	MIPS arithmetic
	Unsigned numbers
	Hexadecimal notation
	Working with unsigned numbers
	Logical shifts in MIPS
	Unsigned overflow
	Signed two’s-complement numbers
	Two’s-complement values
	Negating a two’s complement number
	Two’s-complement numbers with n=4
	Working with signed numbers
	Signed overflow
	Ariane 5
	Sign extension
	Interpreting bit patterns
	Signed and unsigned comparisons
	Signed and unsigned addition
	When to use unsigned numbers
	MIPS arithmetic instruction summary
	Hardware for single-bit operations
	A one-bit ALU
	An n-bit ALU
	A whole MIPS ALU
	MIPS ALU design
	Summary

		hhuang@cs.uiuc.edu
	2003-08-22T02:24:43-0500
	Urbana, Illinois
	Howard Huang
	I am the author of this document

