
February 12, 2003 ©2001-2003 Howard Huang 1

Performance

Today we’ll try to answer several questions about performance.
— Why is performance important?
— How can you define performance more precisely?
— How do hardware and software design affect performance?
— How do you measure performance in the real world?

We’ll use the ideas from today to evaluate the different CPU designs that
are coming up in the next several weeks.

February 12, 2003 Performance 2

Performance for users

Users want to evaluate all of the seemingly conflicting claims in the
industry, and get the most for their money.

Q: Why do end users need a new performance metric?
A: End users who rely only on megahertz as an indicator for
performance do not have a complete picture of PC processor
performance and may pay the price of missed expectations.

February 12, 2003 Performance 3

Performance for developers

Programmers are interested in making faster software.
— Software can take advantage of new hardware features, such as extra

instructions or graphics processors for games.
— At the same time, programmers should avoid writing slower code that

relies on complex instructions or frequent memory accesses.
Hardware designers want to build faster systems.
— You can add features that are likely to be used in new software and to

improve performance, like SSE2 instructions in the Pentium 4.
— You could also find ways to speed up existing systems and software,

perhaps by increasing the cache size or bus speed.
Fast software and fast hardware go hand in hand.

February 12, 2003 Performance 4

Execution time

The most intuitive measure of performance is just execution time, or how
long you have to wait for a program to finish running.
Our focus for the next several weeks will be on CPU processing time, but
there are other factors in determining execution time too.
— Memory and cache accesses
— Input and output from disks, video cards, networks, etc.
— Other processes in a multitasking system

We’ll look at some of these later in the course.

February 12, 2003 Performance 5

The components of execution time

Execution time can be divided into two parts.
— User time is spent running the application program itself.
— System time is when the application calls operating system code.

The distinction between user and system time is not always clear,
especially under different operating systems.
The Unix time command shows both.

salary.125 > time distill 05-examples.ps
Distilling 05-examples.ps (449,119 bytes)
10.8 seconds (0:11)
449,119 bytes PS => 94,999 bytes PDF (21%)
10.61u 0.98s 0:15.15 76.5%

User time

CPU usage = (User + System) / Total

Total time (including other processes)

System time

February 12, 2003 Performance 6

Throughput

Another important measurement is throughput, or how many tasks can be
performed in some amount of time.
Throughput is especially important for servers.
— How many web pages can be served per minute?
— How many database transactions can be processed per second?

Modern multitasking operating systems always trade some execution time
in exchange for throughput—each individual program runs slower overall,
but many programs can run together.
Execution time and throughput are related.
— Improving execution time also improves throughput.
— It’s possible to improve throughput but not execution time.

February 12, 2003 Performance 7

Execution time vs. throughput

Let’s say you’re shopping at that new Wal-Mart by the airport. There is
one register open, and the cashier takes two minutes per customer.
— The “execution time” is 2 minutes.
— The “throughput” would be 30 customers per hour.

After some training, the cashier can process customers in 1.5 minutes.
— The execution time is now improved to 1.5 minutes.
— The throughput also improves, to 40 customers per hour.

Or they could open three checkout lines, all with untrained personnel:
— It still takes 2 minutes for each customer to check out.
— But with three lines, there are 90 customers leaving per hour!

February 12, 2003 Performance 8

Measuring performance

We’ll measure performance according to execution time.
A lower execution time is better, so we can define the performance of a
computer system X on a program P as follows.

We can say that system X is n times faster than Y on program P if:

This is equivalent to saying that Y is n times slower than X.

Execution timeX,P

1
=PerformanceX,P

Execution timeX,PPerformanceY,P

n=
Execution timeY,P

=
PerformanceX,P

February 12, 2003 Performance 9

Clock cycle time

There are three equally important components of execution time.
One “cycle” is the minimum time it takes the CPU to do any work.
— The clock cycle time or clock period is just the length of a cycle.
— The clock rate, or frequency, is the reciprocal of the cycle time.

Of course, the lower the cycle time and the higher the clock rate, the
faster a given architecture can run.
Some examples illustrate some typical frequencies.
— A 500MHz processor has a cycle time of 2ns.
— A 2GHz (2000MHz) CPU has a cycle time of just 0.5ns.

February 12, 2003 Performance 10

CPI

Another important component is the average number of clock cycles per
instruction, or CPI, for a particular machine and program.
— The CPI depends on the actual instructions appearing in the program—

a floating-point intensive application might have a higher CPI than an
integer-based program.

— It also depends on the CPU implementation. For example, a Pentium
can execute the same instructions as an older 80486, but faster.

In CS231 we assumed each instruction took one cycle, so we had CPI = 1.
— The CPI is often higher in reality because of memory or I/O accesses,

or more complex instructions.
— The CPI can also be lower than 1, if you consider multiprocessors or

superscalar architectures that execute many instructions at once.

February 12, 2003 Performance 11

Instructions executed

Finally, we need to consider the number of instructions in a program.
— We are not interested in the static instruction count, or how many

lines of code are in a program.
— Instead we care about the dynamic instruction count, or how many

instructions are actually executed when the program runs.
For example, there are three lines of code below, but the number of
instructions executed would be 2001.

li $a0, 1000
Ostrich: sub $a0, $a0, 1

bne $a0, $0, Ostrich

Programs that execute more instructions may take more time.

February 12, 2003 Performance 12

Computing the execution time

Now we can express the CPU time more precisely.

CPU timeX,P = Instructions executedP × CPIX,P × Clock cycle timeX

Make sure you have the units straight!

We can use this formula to determine how various changes to a program
or machine will affect performance.

Clock cycleInstructionsProgramProgram

Seconds
×

Clock cycles
×

Instructions
=

Seconds

February 12, 2003 Performance 13

Programs, hardware and compilers

CPU timeX,P = Instructions executedP × CPIX,P × Clock cycle timeX

Execution time and performance depend on both the particular system
and the particular program being executed.
How does the machine X affect performance?
— Its implementation of the instruction set helps to determine CPI.
— The processor’s frequency will determine the clock cycle time.

How does the program P affect performance?
— It determines the number of instructions executed.
— The types of those instructions influence the CPI.

A good compiler is critical for optimizing program code!

February 12, 2003 Performance 14

Comparing ISA-compatible processors

Let’s compare the performances two 8086-based processors.
— An 800MHz AMD Duron, with a CPI of 1.2 for an MP3 compressor.
— A 1GHz Pentium III with a CPI of 1.5 for the same program.

Compatible processors implement identical instruction sets and will use
the same executable files, with the same number of instructions.
But they implement the ISA differently, which leads to different CPIs.

CPU timeAMD,P = InstructionsP × CPIAMD,P × Cycle timeAMD

= InstructionsP × 1.2 × 1.25ns
= 1.5 × InstructionsP ns

CPU timeP3,P = InstructionsP × CPIP3,P × Cycle timeP3

= InstructionsP × 1.5 × 1ns
= 1.5 × InstructionsP ns

So the execution time and performance are the same!

February 12, 2003 Performance 15

Comparing clock rates

How about comparing a 2.5 GHz and a 3.0 GHz Pentium 4?
— Selling the same processor at different clock rates is common.
— Both processors will run the same code and have the same CPI.

CPU time2.5,P = InstructionsP × CPI2.5,P × Cycle time2.5

= InstructionsP × CPI2.5,P × 0.40ns

CPU time3.0,P = InstructionsP × CPI2.5,P × Cycle time3.0

= InstructionsP × CPI2.5,P × 0.33ns

As you might expect, the 3.0 GHz chip is 20% faster than the 2.5 GHz.
Remember this is only CPU time, and it ignores all other factors!

0.33CPU time3.0,PPerformance2.5,P

1.2=
0.40

=
CPU time2.5,P

=
Performance3.0,P

February 12, 2003 Performance 16

Comparing compilers

Let’s compare two different compilers for the same system.
The better compiler generates programs that need 5% fewer instructions
and have a 10% lower CPI than the base compiler.

CPU timeX,Base = InstructionsP × CPIX,Base × Cycle timeX

CPU timeX,Opt = (0.95 InstructionsP) × (0.90 CPIX,Base) × Cycle timeX

= 0.86 × CPU timeBase,P

So there are many ways to speed up a system.

0.86CPU timeX,OptPerformanceX,Base

1.17=
1.00

=
CPU timeX,Base

=
PerformanceX,Opt

February 12, 2003 Performance 17

Amdahl’s Law

Amdahl’s Law states that optimizations are limited in their effectiveness.

For example, doubling the speed of floating-point operations sounds like
a great idea. But if only 10% of the program execution time T involves
floating-point code, then the overall performance improves by just 5%.

A corollary of this law is that we should always try to make the common
case fast—enhance the parts of the program that are used most often, so
“time affected by improvement” is as large as possible.

Amount of improvement
Time unaffected
by improvement

+
Time affected by improvement

=
Execution
time after

improvement

2
0.95 T=0.90 T+

0.10 T
=

Execution
time after

improvement

February 12, 2003 Performance 18

Benchmarking

What programs should we use to measure real-world performance?
— Ideally we’d test each computer with our favorite programs.
— But there are too many computers and programs out there!

Instead people often rely on a few benchmark programs in an attempt to
characterize the performance of systems.
A good benchmark should reflect the performance of other applications
too—in particular, it should have a realistic mix of instructions.
Some common benchmarks include:
— Adobe Photoshop for image processing
— BAPCo SYSmark for office applications
— Unreal Tournament 2003 for 3D games

http://www.adobe.com/products/photoshop/main.html

February 12, 2003 Performance 19

Synthetic benchmarks

A synthetic benchmark is a program whose only purpose is to measure
performance.
They are usually small and easy to port to different CPUs and operating
systems, so they are convenient for comparing systems.
However, there are many disadvantages too.
— They’re small enough that it’s easy for compiler writers and CPU

designers to cheat and make improvements that apply only to that
particular benchmark.

— Synthetic benchmarks may not contain a realistic instruction mix and
may not reflect performance of typical applications.

Many synthetic benchmarks are in use today.
— SiSoft Sandra measures general system performance.
— Futuremark 3DMark03 tests Windows 3D game performance (it does

include code from actual games).

http://www.sisoftware.co.uk/
http://www.futuremark.com/

February 12, 2003 Performance 20

Some actual benchmarks

SiSoft Sandra tests several system components.

http://www.sisoftware.co.uk

It produces pretty bar graphs.

February 12, 2003 Performance 21

Performance of many programs

The best way to see how a system
performs for a variety of programs is to
just show the execution times of all of
the programs.
Here are execution times for several
different Photoshop 5.5 tasks, from

http://www.tech-report.com

http://www.tech-report.com/
http://www.tech-report.com/

February 12, 2003 Performance 22

Summarizing performance

Summarizing performance with a single number can be misleading—just
like summarizing four years of school with a single GPA!

If you must have a single number, you
could sum the execution times.
This example graph displays the total
execution time of the individual tests
from the previous page.
A similar option is to find the average of
all the execution times.
For example, the 800MHz Pentium III (in
yellow) needed 227.3 seconds to run 21
programs, so its average execution time
is 227.3⁄21 = 10.82 seconds.
A weighted sum or average is also possible, and lets you emphasize some
benchmarks more than others.

February 12, 2003 Performance 23

Summary

Performance is one of the most important criteria in judging systems.
There are two main measurements of performance.
— Execution time is what we’ll focus on.
— Throughput is important for servers and operating systems.

Our main performance equation explains how performance depends on
several factors related to both hardware and software.

CPU timeX,P = Instructions executedP × CPIX,P × Clock cycle timeX

It can be hard to measure these factors in real life, but this is a useful
guide for comparing systems and designs.
Amdahl’s Law tell us how much improvement we can expect from specific
enhancements.
The best benchmarks are real programs, which are more likely to reflect
common instruction mixes.

	Performance
	Performance for users
	Performance for developers
	Execution time
	The components of execution time
	Throughput
	Execution time vs. throughput
	Measuring performance
	Clock cycle time
	CPI
	Instructions executed
	Computing the execution time
	Programs, hardware and compilers
	Comparing ISA-compatible processors
	Comparing clock rates
	Comparing compilers
	Amdahl’s Law
	Benchmarking
	Synthetic benchmarks
	Some actual benchmarks
	Performance of many programs
	Summarizing performance
	Summary

		hhuang@cs.uiuc.edu
	2003-08-22T02:23:31-0500
	Urbana, Illinois
	Howard Huang
	I am the author of this document

