
February 3, 2003 ©2001-2003 Howard Huang 1

Functions in MIPS

Function calls are relatively simple in a high-level language, but actually
involve multiple steps and instructions at the assembly level.
— The program’s flow of control must be changed.
— Arguments and returning values are passed back and forth.
— Local variables can be allocated and destroyed.

Today we’ll see how these issues are handled in the MIPS architecture.
— There are new instructions for calling functions.
— Conventions are used for sharing registers between functions.
— Functions can make good use of a stack in memory.

February 3, 2003 Functions in MIPS 2

Control flow in C

Invoking a function changes the
control flow of a program twice.
1. Calling the function
2. Returning from the function

In this example the main function
calls fact twice, and fact returns
twice—but to different locations
in main.
Each time fact is called, the CPU
has to remember the appropriate
return address.
Notice that main itself is also a
function! It is called by the
operating system when you run
the program.

int main()
{

...
t1 = fact(8);
t2 = fact(3);
t3 = t1 + t2;
...

}

int fact(int n)
{

int i, f = 1;
for (i = n; i > 1; i--)

f = f * i;
return f;

}

February 3, 2003 Functions in MIPS 3

Control flow in MIPS

MIPS uses the jump-and-link instruction jal to call functions.
— The jal saves the return address (the address of the next instruction)

in the dedicated register $ra, before jumping to the function.
— jal is the only MIPS instruction that can access the value of the

program counter, so it can store the return address PC+4 in $ra.

jal Fact

To transfer control back to the caller, the function just has to jump to
the address that was stored in $ra.

jr $ra

The code on the next page shows the jal and jr instructions that are
necessary for our factorial example.

February 3, 2003 Functions in MIPS 4

Control flow in the example

int main()
{

...
t1 = fact(8);
t2 = fact(3);
t3 = t1 + t2;
...

}

int fact(int n)
{

int i, f = 1;
for (i = n; i > 1; i--)

f = f * i;
return f;

}

main:
...
jal fact

L1: ...
jal fact

L2: ...
...
jr $ra

fact:
...
...
...
...
...
jr $ra

February 3, 2003 Functions in MIPS 5

Data flow in C

Functions accept arguments and
produce return values.
The blue parts of the program
show the actual and formal
arguments of the fact function.
The purple parts of the code deal
with returning and using a result.

int main()
{

...
t1 = fact(8);
t2 = fact(3);
t3 = t1 + t2;
...

}

int fact(int n)
{

int i, f = 1;
for (i = n; i > 1; i--)

f = f * i;
return f;

}

February 3, 2003 Functions in MIPS 6

Data flow in MIPS

MIPS uses the following conventions for function arguments and results.
— Up to four function arguments can be “passed” by placing them in

registers $a0-$a3 before calling the function with jal.
— A function can “return” up to two values by placing them in registers

$v0-$v1, before returning via jr.
These conventions are not enforced by the hardware or assembler, but
programmers agree to them so functions written by different people can
interface with each other.
Later we’ll talk about handling additional arguments or return values.

February 3, 2003 Functions in MIPS 7

Data flow in the example: fact

The fact function has only
one argument and returns
just one value.
The blue assembly code
shows the function using its
argument, which should
have been placed in $a0 by
the caller.
The purple instructions
show fact putting a return
value in $v0 before giving
control back to the caller.
Register $t0 represents local
variable f, and register $t1
represents local variable i.

int fact(int n)
{

int i, f = 1;
for (i = n; i > 1; i--)

f = f * i;
return f;

}

fact:
li $t0, 1 # f = 1
move $t1, $a0 # i = n

loop:
ble $t1, 1, ret # i > 1
mul $t0, $t0, $t1 # f = f × i
sub $t1, $t1, 1 # i--
j loop

ret:
move $v0, $t0 # return f
jr $ra

February 3, 2003 Functions in MIPS 8

Data flow in the example: main

The blue MIPS code shows main passing the actual parameters 8 and 3, by
placing them in register $a0 before the jal instructions.
The purple lines show how the function result in register $v0 can then be
accessed by the caller—here for storage into $t1 and $t2.

int main() main:
{ ...

... li $a0, 8
t1 = fact(8); jal fact

move $t1, $v0

li $a0, 3
t2 = fact(3); jal fact

move $t2, $v0

t3 = t1 + t2; add $t3, $t1, $t2
... ...

} jr $ra

February 3, 2003 Functions in MIPS 9

A note about optimization

We could actually save a couple of instructions in this code.
— Instead of moving the result $t0 into $v0 at the end of the function,

we could just use $v0 throughout the function.
— Similarly, we could use register $a0 without first copying it into $t1.

We’ll use the unoptimized version to illustrate some other points.

fact: fact:
li $t0, 1 li $v0, 1
move $t1, $a0

loop: loop:
ble $t1, 1, ret ble $a0, 1, ret
mul $t0, $t0, $t1 mul $v0, $v0, $a0
sub $t1, $t1, 1 sub $a0, $a0, 1
j loop j loop

ret:
move $v0, $t0 ret:
jr $ra jr $ra

February 3, 2003 Functions in MIPS 10

A note about types

Assembly language is untyped—there is no distinction between integers,
characters, pointers or other kinds of values.
It is up to you to typecheck your programs. In particular, make sure your
function arguments and return values are used consistently.
For example, what happens if somebody passes the address of an integer
(instead of the integer itself) to the fact function?

fact:
li $t0, 1
move $t1, $a0

loop:
ble $t1, 1, ret
mul $t0, $t0, $t1
sub $t1, $t1, 1
j loop

ret:
move $v0, $t0
jr $ra

February 3, 2003 Functions in MIPS 11

The big problem so far

There is a big problem here!
— The main code uses $t1 to store

the result of fact(8).
— But $t1 is also used within the

fact function!
The subsequent call to fact(3) will
overwrite the value of fact(8) that
was stored in $t1.

main: li $a0, 8
jal fact
move $t1, $v0
li $a0, 3
jal fact
move $t2, $v0
add $t3, $t1, $t2
jr $ra

fact: li $t0, 1
move $t1, $a0

loop: ble $t1, 1, ret
mul $t0, $t0, $t1
sub $t1, $t1, 1
j loop

ret: move $v0, $t0
jr $ra

February 3, 2003 Functions in MIPS 12

Nested functions

A similar situation happens when
you call a function that then calls
another function.
Let’s say A calls B, which calls C.
— The arguments for the call to

C would be placed in $a0-$a3,
thus overwriting the original
arguments for B.

— Similarly, jal C overwrites the
return address that was saved
in $ra by the earlier jal B.

A: ...
Put B’s args in $a0-$a3
jal B # $ra = A2

A2: ...

B: ...
Put C’s args in $a0-$a3,
erasing B’s args!
jal C # $ra = B2

B2: ...
jr $ra # Where does

this go???

C: ...
jr $ra

February 3, 2003 Functions in MIPS 13

Spilling registers

The CPU has a limited number of registers for use by all functions, and
it’s possible that several functions will need the same registers.
We can keep important registers from being overwritten by a function
call, by saving them before the function executes, and restoring them
after the function completes.
But there are two important questions.
— Who is responsible for saving registers—the caller or the callee?
— Where exactly are the register contents saved?

February 3, 2003 Functions in MIPS 14

Who saves the registers?

Who is responsible for saving important registers across function calls?
— The caller knows which registers are important to it and should be

saved.
— The callee knows exactly which registers it will use and potentially

overwrite.
However, in the typical “black box” programming approach, the caller
and callee do not know anything about each other’s implementation.
— Different functions may be written by different people or companies.
— A function should be able to interface with any client, and different

implementations of the same function should be substitutable.
So how can two functions cooperate and share registers when they don’t
know anything about each other?

February 3, 2003 Functions in MIPS 15

The caller could save the registers…

One possibility is for the caller to
save any important registers that
it needs before making a function
call, and to restore them after.
But the caller does not know what
registers are actually written by
the function, so it may save more
registers than necessary.
In the example on the right, frodo
wants to preserve $a0, $a1, $s0
and $s1 from gollum, but gollum
may not even use those registers.

frodo: li $a0, 3
li $a1, 1
li $s0, 4
li $s1, 1

Save registers
$a0, $a1, $s0, $s1

jal gollum

Restore registers
$a0, $a1, $s0, $s1

add $v0, $a0, $a1
add $v1, $s0, $s1
jr $ra

February 3, 2003 Functions in MIPS 16

…or the callee could save the registers…

Another possibility is if the callee
saves and restores any registers it
might overwrite.
For instance, a gollum function
that uses registers $a0, $a2, $s0
and $s2 could save the original
values first, and restore them
before returning.
But the callee does not know what
registers are important to the
caller, so again it may save more
registers than necessary.

gollum:
Save registers
$a0 $a2 $s0 $s2

li $a0, 2
li $a2, 7
li $s0, 1
li $s2, 8
...

Restore registers
$a0 $a2 $s0 $s2

jr $ra

February 3, 2003 Functions in MIPS 17

…or they could work together

MIPS uses conventions again to split the register spilling chores.
The caller is responsible for saving and restoring any of the following
caller-saved registers that it cares about.

$t0-$t9 $a0-$a3 $v0-$v1

In other words, the callee may freely modify these registers, under the
assumption that the caller already saved them if necessary.
The callee is responsible for saving and restoring any of the following
callee-saved registers that it uses. (Remember that $ra is “used” by jal.)

$s0-$s7 $ra

Thus the caller may assume these registers are not changed by the callee.
Be especially careful when writing nested functions, which act as both a
caller and a callee!

February 3, 2003 Functions in MIPS 18

Register spilling example

This convention ensures that the caller and callee together save all of the
important registers—frodo only needs to save registers $a0 and $a1, while
gollum only has to save registers $s0 and $s2.

frodo: li $a0, 3
li $a1, 1
li $s0, 4
li $s1, 1

Save registers
$a0 and $a1

jal gollum

Restore registers
$a0 and $a1

add $v0, $a0, $a1
add $v1, $s0, $s1
jr $ra

gollum:
Save registers
$s0 and $s2

li $a0, 2
li $a2, 7
li $s0, 1
li $s2, 8
...

Restore registers
$s0 and $s2

jr $ra

February 3, 2003 Functions in MIPS 19

How to fix factorial

In the factorial example, main (the caller) should save two registers.
— $t1 must be saved before the second call to fact.
— $ra will be implicitly overwritten by the jal instructions.

But fact (the callee) does not need to save anything. It only writes to
registers $t0, $t1 and $v0, which should have been saved by the caller.

main:
#--Save $ra--

li $a0, 8
jal fact
move $t1, $v0

#--Save $t1--

li $a0, 3
jal fact
move $t2, $v0

#--Restore $t1--

add $t3, $t1, $t2

#--Restore $ra--

jr $ra

fact:
li $t0, 1
move $t1, $a0

loop:
ble $t1, 1, ret
mul $t0, $t0, $t1
sub $t1, $t1, 1
j loop

ret:
move $v0, $t0
jr $ra

February 3, 2003 Functions in MIPS 20

Where are the registers saved?

Now we know who is responsible for saving which registers, but we still
need to discuss where those registers are saved.
It would be nice if each function call had its own private memory area.
— This would prevent other function calls from overwriting our saved

registers—otherwise using memory is no better than using registers.
— We could use this private memory for other purposes too, like storing

local variables.

February 3, 2003 Functions in MIPS 21

Function calls and stacks

Notice function calls and returns occur in
a stack-like order: the most recently
called function is the first one to return.

1. Someone calls A
2. A calls B
3. B calls C
4. C returns to B
5. B returns to A
6. A returns

Here, for example, C must return to B
before B can return to A.

A: ...

jal B

A2: ...

jr $ra

B: ...

jal C

B2: ...

jr $ra

C: ...

jr $ra

1

2

3
4

5

6

February 3, 2003 Functions in MIPS 22

Stacks and function calls

It’s natural to use a stack for function call storage. A block
of stack space, called a stack frame, can be allocated for
each function call.
— When a function is called, it creates a new frame onto

the stack, which will be used for local storage.
— Before the function returns, it must pop its stack frame,

to restore the stack to its original state.
The stack frame can be used for several purposes.
— Caller- and callee-save registers can be put in the stack.
— The stack frame can also hold local variables, or extra

arguments and return values.

February 3, 2003 Functions in MIPS 23

The MIPS stack

In MIPS machines, part of main memory is
reserved for a stack.
— The stack grows downward in terms of

memory addresses.
— The address of the top element of the

stack is stored in yet another dedicated
register, $sp (stack pointer).

MIPS does not provide “push” and “pop”
instructions. Instead, they must be done
explicitly by the programmer.

0x7FFFFFFF

0x00000000

$sp

stack

February 3, 2003 Functions in MIPS 24

MIPS memory usage

What goes into the rest of MIPS memory?
A heap stores dynamically allocated data.
— It grows upwards, toward the stack.
— This lets the stack and heap each grow

as large as necessary.
Static data holds mostly global variables.
The text segment contains your program
code and serves as the instruction memory.
You can see each of these areas in the main
window when you run SPIM.

0x7FFFFFFF

0x00000000

$sp

stack

text segment

static data

heap

0x10000000

0x00400000

February 3, 2003 Functions in MIPS 25

Pushing elements

To push elements onto the stack:
— Move the stack pointer $sp down to

make room for the new data.
— Store the elements into the stack.

For example, to push registers $t1 and $t2
onto the stack:

sub $sp, $sp, 8
sw $t1, 4($sp)
sw $t2, 0($sp)

An equivalent sequence is:

sw $t1, -4($sp)
sw $t2, -8($sp)
sub $sp, $sp, 8

Before and after diagrams of the stack are
shown on the right.

word 2

word 1

$sp

Before

word 2

word 1

$t1

$t2$sp

After

February 3, 2003 Functions in MIPS 26

Accessing and popping elements

You can access any element in the stack
(not just the top one) if you know where it
is relative to $sp.
For example, to retrieve the value of $t1:

lw $s0, 4($sp)

You can pop, or “erase,” elements simply
by adjusting the stack pointer upwards.
To pop the value of $t2, yielding the stack
shown at the bottom:

addi $sp, $sp, 4

Note that the popped data is still present
in memory, but data past the stack pointer
is not valid.

word 2

word 1

$t1

$t2

word 2

word 1

$t1

$t2$sp

$sp

February 3, 2003 Functions in MIPS 27

The example one last time

The main code needs two words of stack space—$t1 is stored at 0($sp),
and $ra is stored at 4($sp).
It’s easiest to adjust $sp once at the beginning and once at the end.

main:
sub $sp, $sp, 8 # Allocate two words on stack
sw $ra, 4($sp) # Save $ra because of jal

li $a0, 8
jal fact
move $t1, $v0

sw $t1, 0($sp) # Save $t1 for later use

li $a0, 3
jal fact
move $t2, $v0

lw $t1, 0($sp) # Restore $t1

add $t3, $t1, $t2

lw $ra, 4($sp) # Restore $ra
addi $sp, $sp, 8 # Deallocate stack frame

jr $ra

February 3, 2003 Functions in MIPS 28

Summary

Today we focused on implementing function calls in MIPS.
— We call functions using jal, passing arguments in registers $a0-$a3.
— Functions place results in $v0-$v1 and return using jr $ra.

Managing resources is an important part of function calls.
— To keep important data from being overwritten, registers are saved

according to conventions for caller-save and callee-save registers.
— Each function call uses stack memory for saving registers, storing local

variables and passing extra arguments and return values.
MIPS programmers must follow many conventions. Nothing prevents a
rogue program from overwriting registers or stack memory used by some
other function.
Next time we’ll look at more example programs, some of which even
involve recursion!

	Functions in MIPS
	Control flow in C
	Control flow in MIPS
	Control flow in the example
	Data flow in C
	Data flow in MIPS
	Data flow in the example: fact
	Data flow in the example: main
	A note about optimization
	A note about types
	The big problem so far
	Nested functions
	Spilling registers
	Who saves the registers?
	The caller could save the registers…
	…or the callee could save the registers…
	…or they could work together
	Register spilling example
	How to fix factorial
	Where are the registers saved?
	Function calls and stacks
	Stacks and function calls
	The MIPS stack
	MIPS memory usage
	Pushing elements
	Accessing and popping elements
	The example one last time
	Summary

		hhuang@cs.uiuc.edu
	2003-08-22T02:25:48-0500
	Urbana, Illinois
	Howard Huang
	I am the author of this document

