
January 29, 2003 ©2001-2003 Howard Huang 1

More MIPS instructions

Last time we introduced the MIPS instruction set architecture, with its
three-address instructions and dedicated loads and stores.
Today we’ll go into more detail about the ISA.
— Constant values can be embedded in instructions.
— Pseudo-instructions make programming easier for people.
— Branches and jumps alter a program’s control flow.

We also discuss the binary representation of MIPS instructions.
— This will reveal some restrictions on certain instructions.
— We’ll see workarounds for all of the limitations.

January 29, 2003 More MIPS instructions 2

Immediate operands

The ALU instructions we’ve seen so far expect register operands. How do
you get data into registers in the first place?
— $0, or $zero, is a dedicated register which always contains 0 and

cannot be modified. (Go ahead and try.)

add $t0, $0, $0 # $t0 = 0

— Some MIPS instructions allow you to specify a signed constant, or
immediate value, for the second source instead of a register. For
example, here is the immediate add instruction, addi:

addi $t0, $t1, 4 # $t0 = $t1 + 4

MIPS is still considered a load/store architecture, because arithmetic
operands cannot be from arbitrary memory locations. They must either
be registers or constants that are embedded in the instruction.

January 29, 2003 More MIPS instructions 3

Immediate examples

We can use constant operands and $0 to initialize registers or to copy
data between registers.

addi $a0, $0, 2000 # Initialize $a0 to 2000

add $a1, $t0, $0 # Copy $t0 into $a1

Here is a short example which sets the first two words of an array to 0
and 23, where the array starts at address 2000.

addi $a0, $0, 2000 # Initialize $a0 to 2000
sw $0, 0($a0) # Store 0 in address 2000
addi $t0, $0, 23 # Set $t0 = 23
sw $t0, 4($a0) # Store 23 in address 2004

January 29, 2003 More MIPS instructions 4

Pseudo-instructions

MIPS assemblers support pseudo-instructions that give the illusion of a
more expressive instruction set, but are actually translated into one or
more simpler, “real” instructions.
For example, you can use the li and move pseudo-instructions:

li $a0, 2000 # Load immediate 2000 into $a0

move $a1, $t0 # Copy $t0 into $a1

They are probably clearer than the MIPS instructions we just saw:

addi $a0, $0, 2000 # Initialize $a0 to 2000

add $a1, $t0, $0 # Copy $t0 into $a1

We’ll see lots more pseudo-instructions this semester.
— A complete list of instructions is given in Appendix A of the text.
— Unless otherwise stated, you can always use pseudo-instructions in

your assignments and on exams.

http://www.cs.wisc.edu/~larus/SPIM/cod-appa.pdf

January 29, 2003 More MIPS instructions 5

Control flow in high-level languages

The instructions in a program usually execute one after another, but it’s
often necessary to alter the normal control flow.
Conditional statements execute only if some test expression is true.

// Find the absolute value of *a0
v0 = *a0;
if (v0 < 0)

v0 = -v0; // This might not be executed
v1 = v0 + v0;

Loops cause some statements to be executed many times.

// Sum the elements of a five-element array a0
v0 = 0;
t0 = 0;
while (t0 < 5) { // These statements

v0 = v0 + a0[t0]; // will be executed
t0++; // five times

}

January 29, 2003 More MIPS instructions 6

Jumps

Many processors only provide relatively simple control flow instructions
that just set the program counter.
The MIPS jump instruction j always changes the value of the PC.

lw $t1, 0($a0)
lw $t2, 0($a1)
add $t0, $t1, $t2
j PartC // Skip two instructions

PartB: add $t0, $t0, $t0
addi $t0, $t0, 1

PartC: sw $t0, 8($a1)

Here “PartB” and “PartC” are labels which represent the addresses of
their respective instructions.
The two skipped instructions in this example could still be executed, if a
jump (or branch) to “PartB” exists elsewhere in the program.

January 29, 2003 More MIPS instructions 7

Branches

A branch instruction may change the PC, depending on whether or not
some condition is true.
For example, a bne branches if its two register operands are not equal.
Otherwise, execution continues as usual with the next instruction.

bne $t0, $t1, PartC // If $t0 != $t1 then
PartB: lw $t1, 0($a0) // these instructions

addi $t1, $t1, 5 // will be skipped
PartC: sw $t1, 0($a0)

Here are some other useful MIPS branches.

beq $t0, $t1, L0 // Branch if $t0 == $t1
blt $t0, $t1, L1 // Branch if $t0 < $t1
ble $t0, $t1, L2 // Branch if $t0 <= $t1
bgt $t0, $t1, L3 // Branch if $t0 > $t1
bge $t0, $t1, L4 // Branch if $t0 >= $t1

There are also immediate versions of these branches, where the second
source is a constant instead of a register.

January 29, 2003 More MIPS instructions 8

Translating an if-then statement

We can use branch instructions to translate if-then statements into MIPS
assembly code.

v0 = *a0; lw $v0, 0($a0)
if (v0 < 0) bge $v0, $0, L

v0 = -v0; sub $v0, $0, $v0
v1 = v0 + v0; L: add $v1, $v0, $v0

Sometimes it’s easier to invert the original condition.
— In this case, we changed “continue if v0 < 0” to “skip if v0 >= 0”.
— This saves a few instructions in the resulting assembly code.

January 29, 2003 More MIPS instructions 9

Translating a while statement

Here is a translation of the while loop, using both branches and jumps.

v0 = 0; move $v0, $0
t0 = 0; move $t0, $0
while (t0 < 5) { Loop: bge $t0, 5, Exit

v0 = v0 + a0[t0]; mul $s0, $t0, 4
add $s0, $a0, $s0
lw $s1, 0($s0)
add $v0, $v0, $s1

t0++; addi $t0, $t0, 1
} j Loop
... Exit: ...

Note how complex the loop body in magenta is!
— The loop index $t0 is multiplied by 4 to arrive at a byte offset.
— That is added to the array’s base address, to compute the address of

array element a0[t0].
— Finally, a0[t0] is loaded into register $s1 for the add instruction.

January 29, 2003 More MIPS instructions 10

Translating a for loop

Every for loop can be re-written as a while loop.

v0 = 0; v0 = 0;
t0 = 0;

for (t0=0; t0 < 5; t0++) while (t0 < 5) {
v0 = v0 + a0[t0]; v0 = v0 + a0[t0];

t0++;
}

So if you know how a while loop works, you’ll also understand for loops.

January 29, 2003 More MIPS instructions 11

Pseudo-branches

The MIPS processor only supports two branch instructions, beq and bne.
The other branches are all pseudo-instructions!
The (real) set-if-less-than instruction slt compares two registers.
— If the first is less than the second, the destination is set to 1.
— Otherwise, the destination register is set to 0.

addi $t1, $t0, 1 // $t1 = $t0 + 1
slt $v0, $t0, $t1 // $v0 = 1 since $t0 < $t1
slt $v1, $t1, $t0 // $v1 = 0 since $t1 >= $t0

Many pseudo-branches can be implemented using slt. For example, a
branch-if-less-than instruction blt $a0, $a1, Label translates into the
following.

slt $at, $a0, $a1 // $at = 1 if $a0 < $a1
bne $at, $0, Label // Branch if $at != 0

January 29, 2003 More MIPS instructions 12

Immediate pseudo-branches

There is also an immediate version of slt, slti, which compares registers
against constants.

slti $at, $a0, 5 // $at = 1 if $a0 < 5

This supports immediate branches, which are also pseudo-instructions.
For example, blti $a0, 5, Label is translated into two instructions.

slt $at, $a0, 5
bne $at, $0, Label // Branch if $a0 < 5

All of the pseudo-branches need a register to save the result of slt, even
though it’s not needed afterwards.
— MIPS assemblers use register $1, or $at, for temporary storage.
— You should be careful in using $at in your own programs, as it may be

overwritten by assembler-generated code.
Later this semester we’ll see how supporting just beq and bne simplifies
the processor design.

January 29, 2003 More MIPS instructions 13

Assembly vs. machine language

So far we’ve been using assembly language.
— We assign names to operations (e.g., add) and operands (e.g., $t0).
— Branches and jumps use labels instead of actual addresses.
— Assemblers support many pseudo-instructions.

Programs must eventually be translated into machine language, a binary
format that can be stored in memory and decoded by the CPU.
MIPS machine language is designed to be easy to decode, much like the
basic processor studied in CS231.
— Each MIPS instruction is the same length, 32 bits.
— There are only three different instruction formats, which are very

similar to each other.
Studying MIPS machine language will also reveal some restrictions in the
instruction set architecture, and how they can be overcome.

January 29, 2003 More MIPS instructions 14

R-type format

Register-to-register arithmetic instructions use the R-type format.

This format includes six different fields.
— op is an operation code or opcode that selects a specific operation.
— rs and rt are the first and second source registers.
— rd is the destination register.
— shamt is used for shift instructions, which we haven’t seen yet.
— func is used together with op to select an arithmetic instruction.

The inside back cover of the textbook lists opcodes and function codes for
all of the MIPS instructions.

6 bits5 bits5 bits5 bits5 bits6 bits

funcshamtrdrtrsop

January 29, 2003 More MIPS instructions 15

About the registers

We have to encode register names as 5-bit numbers from 00000 to 11111.
— For example, $t8 is register $24, which is represented as 11000.
— The complete mapping is given on page A-23 in the book.

The number of registers available affects the instruction length.
— Each R-type instruction references 3 registers, which requires a total

of 15 bits in the instruction word.
— We can’t add more registers without either making instructions longer

than 32 bits, or shortening other fields like op and possibly reducing
the number of available operations.

January 29, 2003 More MIPS instructions 16

I-type format

Load, store, branch and immediate instructions all use the I-type format.

For uniformity, op, rs and rt are in the same positions as in the R-format.
The meaning of the register fields depends on the exact instruction.
— rs is a source register—an address for loads and stores, or an operand

for branch and immediate arithmetic instructions.
— rt is a source register for branches, but a destination register for the

other I-type instructions.
The address is a 16-bit signed two’s-complement value.
— It can range from -32,768 to +32,767.
— But that’s not always enough!

16 bits5 bits5 bits6 bits

addressrtrsop

January 29, 2003 More MIPS instructions 17

Larger constants

Larger constants can be loaded into a register 16 bits at a time.
— The load upper immediate instruction lui loads the highest 16 bits of a

register with a constant, and clears the lowest 16 bits to 0s.
— An immediate logical OR, ori, then sets the lower 16 bits.

To load the 32-bit value 0000 0000 0011 1101 0000 1001 0000 0000:

lui $s0, 61 # $s0 = 003D 0000 (in hex)
ori $s0, $s0, 2304 # $s0 = 003D 0900

This illustrates the principle of making the common case fast.
— Most of the time, 16-bit constants are enough.
— It’s still possible to load 32-bit constants, but at the cost of two extra

instructions and one temporary register.
Pseudo-instructions may contain large constants. Assemblers including
SPIM will translate such instructions correctly.

January 29, 2003 More MIPS instructions 18

Loads and stores

lw $t0, constant($a0)

The limited 16-bit constant can present problems for array accesses.
— If an array’s base address is higher than 32,767, the constant won’t be

able to represent it, like we showed last time.
— If the array contains more than 32,767 bytes of data, the constant

won’t be able to represent the index.
In these situations, we have to compute the exact address of the desired
array element and load it into the register manually.
For instance, the following code fragment can load the one millionth byte
of an array that starts at decimal address 3,000,000.

lui $s0, 61

ori $s0, $s0, 2304 # $s0 = 4000000 (decimal)
lb $t1, 0($s0) # Read from Mem[4000000]

January 29, 2003 More MIPS instructions 19

Branches

For branch instructions, the constant field is not an address, but an offset
from the current program counter (PC) to the target address.

beq $at, $0, L

add $v1, $v0, $0
add $v1, $v1, $v1
j Somewhere

L: add $v1, $v0, $v0

Since the branch target L is three instructions past the beq, the address
field would contain 3. The whole beq instruction would be stored as:

For some reason SPIM is off by one, so the code it produces would contain
an address of 4. (But SPIM branches still execute correctly.)

addressrtrsop

0000 0000 0000 00110000000001000100

January 29, 2003 More MIPS instructions 20

Larger branch constants

Empirical studies of real programs show that most branches go to targets
less than 32,767 instructions away—branches are mostly used in loops and
conditionals, and programmers are taught to make code bodies short.
If you do need to branch further, you can use a jump with a branch. For
example, if “Far” is very far away, then the effect of:

beq $s0, $s1, Far

...

can be simulated with the following actual code.

bne $s0, $s1, Next

j Far
Next: ...

Again, the MIPS designers have taken care of the common case first.

January 29, 2003 More MIPS instructions 21

J-type format

Finally, the jump instruction uses the J-type instruction format.

The jump instruction contains a word address.
— Remember that each MIPS instruction is one word long, and word

addresses must be divisible by four.
— So instead of saying “jump to address 4000,” it’s enough to just say

“jump to instruction 1000.”
— A 26-bit address field lets you jump to any address from 0 to 228.

For even longer jumps MIPS has a jump register, or jr, instruction that
can jump to any 32-bit address stored in a register.

jr $ra # Jump to 32-bit address in register $ra

26 bits6 bits

addressop

January 29, 2003 More MIPS instructions 22

Summary

Today we saw several additional MIPS features.
— Immediate instructions permit the use of constant values.
— Assemblers can translate more powerful pseudo-instructions into the

simpler instructions actually supported in hardware.
— Branches and jumps help to implement various high-level control flow

structures, like conditional statements and loops.
We also studied MIPS machine language.
— All instructions are the same length, 32 bits.
— The three instruction formats are I-type, R-type and J-type.

The 16-bit constant field in I-type instructions is enough for most common
situations. In other cases, we can always resort to longer code fragments.
Sections begin this week, and will provide an introduction to the SPIM
assembler that we use to run MIPS programs.

	More MIPS instructions
	Immediate operands
	Immediate examples
	Pseudo-instructions
	Control flow in high-level languages
	Jumps
	Branches
	Translating an if-then statement
	Translating a while statement
	Translating a for loop
	Pseudo-branches
	Immediate pseudo-branches
	Assembly vs. machine language
	R-type format
	About the registers
	I-type format
	Larger constants
	Loads and stores
	Branches
	Larger branch constants
	J-type format
	Summary

		hhuang@cs.uiuc.edu
	2003-08-22T02:23:15-0500
	Urbana, Illinois
	Howard Huang
	I am the author of this document

