
July 30, 2003 ©2000-2003 Howard Huang 1

Control units

Yesterday we showed how to translate assembly instructions into a binary
machine language representation.
Today we fill in the last piece of the processor and build a control unit to
convert these binary instructions into the appropriate datapath signals.
At the end of the day, we’ll have a simple but complete processor!

July 30, 2003 Control units 2

Datapath review

The datapath contains all of
the circuitry and memory to
do a variety of computations.
The actual computations are
determined by the various
datapath control inputs in red.
— AA, BA and MB select the

sources for operations.
— FS picks an ALU function.
— MW = 1 to write to RAM.
— MD, WR and DA allow data

to be written back to the
register file.

The status bits V, C, N and Z
provide further information
about the ALU output.

D

Register file

A B

WR

DA

AA BA

A B

ALU

F

FS
V
C
N
Z

1 0
Mux B

MB

0 1
Mux D

MD

ADRS DATA

Data RAM

OUT

MW

constant

July 30, 2003 Control units 3

Instruction set review

Data manipulation instructions have one destination register and up to
two sources, which can be two registers or a register and a constant.

ADD R1, R2, R3 R1 ← R2 + R3
SUB R1, R2, #2 R1 ← R2 - 2

Data transfer instructions use register-indirect addressing mode to copy
data between registers and memory.

LD R1, (R2) R1 ← M[R2]
ST (R3), R1 M[R3] ← R1

Jumps and branches on different conditions can also be executed.

JMP LABEL1 PC ← LABEL1
BZ R2, LABEL2 if R2 = 0 then PC ← LABEL2

July 30, 2003 Control units 4

Instruction format review

Yesterday we encoded our assembly language instructions into a binary
representation suitable for storing into memory.
First we defined different binary formats for instructions with different
types of operands.

2 05 38 615 9Format

ADSAADOpcodeJump/branch

OPSADROpcodeImmediate

SBSADROpcodeRegister

6-bit Address FieldAD:
3-bit Constant OperandOP:
3-bit Source Register BSB:
3-bit Source Register ASA:
3-bit Destination RegisterDR:
7-bit Operation CodeOpcode:

July 30, 2003 Control units 5

Opcode review

We also defined binary opcodes to represent all the possible operations.

We arranged the operations in a way that will make today’s control unit
easier to design.
Many opcodes have unused bits to keep the different instruction formats
consistent and to leave room for future expansion of the ISA.

XXXX111JMP

BCX011BranchesBranches
and jumps

FS01Immediate ALU instructions

XXXX110LD

XXXX010STData transfer
operations

FS00Register ALU instructions

0123456

Opcode bitsCategory

July 30, 2003 Control units 6

Block diagram of a processor

Control
Unit

Datapath

Control signals

Status signals
Program

The control unit is the missing piece which connects assembly language
programs and the datapath.
— It reads and executes program instructions in the correct sequence,

accounting for any possible jumps and branches.
— It converts each machine instruction into a set of control signals for

the datapath, including WR, DA, AA, BA, MB, FS, MW and MD.
We’ll start by explaining the main components of the control unit, and
then we’ll see how to implement those components in more detail.

July 30, 2003 Control units 7

Where does the program go?

We’ll use a Harvard architecture, which includes two memory units.
— An instruction memory holds the 16-bit program instructions.
— A separate data memory is used for computations, as we already saw.

The advantage is that we can read an instruction and load or store data in
the same clock cycle.

For simplicity, our diagrams will not show any WR or DATA inputs to the
instruction memory—we’ll assume the program is already loaded, and it
can’t be changed while it’s running.
Many modern processors also use a Harvard architecture, with separate
instruction and data caches.

ADRS
Instruction

RAM

OUT

ADRS DATA

Data RAM

OUT

MW

July 30, 2003 Control units 8

What is the current instruction?

A program counter or PC addresses the instruction memory, to keep track
of the instruction currently being executed.
On each clock cycle, the counter does one of two things.
— If Load = 0, the PC increments, so the next instruction in memory will

be executed.
— If Load = 1, then the PC is updated with Data, which represents some

address specified in a jump or branch instruction.

ADRS
Instruction

RAM

OUT

PCLoad

Data

July 30, 2003 Control units 9

How do binary instructions get executed?

The instruction decoder is a combinational
circuit that takes a single machine language
instruction and produces the appropriate
control signals for the datapath.
These signals will tell the datapath which
registers or memory addresses to access,
and what ALU operations to perform.

ADRS
Instruction

RAM

OUT

PCLoad

Data

Instruction Decoder

DA AA BA MB FS MD WR MW

(to the datapath)

July 30, 2003 Control units 10

What instruction should be executed next?

Finally, the branch control unit
decides what the PC’s next value
should be.
— For normal instructions the PC

will just increment, so we can
execute the next instruction.

— For jumps, the PC should be
loaded with a new address as
specified in the instruction.

— For branches, the PC will be
loaded with a new address
only if the matching status bit
from the ALU is true.

ADRS
Instruction

RAM

OUT

PC

Instruction Decoder

DA AA BA MB FS MD WR MW

Branch
Control

V
C
N
Z

July 30, 2003 Control units 11

The whole control unit

This is the basic control unit. On
each clock cycle several actions
occur.
1. An instruction is read from

the instruction memory.
2. The instruction decoder

generates the correct
datapath control signals.

3. Source registers are read.
4. The ALU or data memory

perform some operation.
5. ALU or RAM outputs are

stored back to the register
file.

6. The PC is incremented, or
reloaded for branches and
jumps.

ADRS
Instruction

RAM

OUT

PC

Instruction Decoder

DA AA BA MB FS MD WR MW

Branch
Control

V
C
N
Z

July 30, 2003 Control units 12

The whole processor

Control Unit Datapath

ADRS
Instruction

RAM

OUT

PC

Instruction Decoder

DA AA BA MB FS MD WR MW

Branch
Control

V
C
N
Z

D

Register file

A B

WR

DA

AA BA

A B

ALU

F

FS
V
C
N
Z

1 0
Mux B

MB

0 1
Mux D

MD

ADRS DATA

Data RAM

OUT

MW

constant

July 30, 2003 Control units 13

Implementing the instruction decoder

The first thing we’ll look at is how to build
the instruction decoder.
The instruction decoder’s input is a 16-bit
binary instruction I that comes from the
instruction memory.
The decoder’s output is a set of control
signals for the datapath.
— AA, BA and MB select the sources for

operations.
— FS picks an ALU function.
— MW = 1 to write to RAM.
— MD, WR and DA allow data to be written

back to the register file.
We’ll see how these signals are generated
for each of our instructions.

ADRS
Instruction

RAM

OUT

Instruction Decoder

DA AA BA MB FS MD WR MW

July 30, 2003 Control units 14

Generating DA, AA, BA

0123456789101112131415
SBSADROpcode

We designed our encodings so the register file addresses DA, AA and BA
can be taken directly out of the 16-bit binary instructions.
— Instruction bits 8-6 are the datapath destination register input, DA.
— Bits 5-3 are fed directly to AA, the first register file source.
— Bits 2-0 are connected directly to BA, the second register source.

This clearly works for register-format instructions as shown above.

33 3

BADA AA

D

Register file

A B

WR

DA

AA BA

July 30, 2003 Control units 15

Don’t-care conditions

0123456789101112131415
OPSADROpcode

But in immediate-format instructions, bits 2-0 hold a constant operand as
shown above, and not a second source register!
— However, immediate instructions only use one source register, so the

control signal BA would be a don’t care condition anyway.
— Similarly, jump and branch instructions require neither a destination

register nor a second source register.
So it’s always okay to extract DA, AA and BA directly from the instruction.

DA2 DA1 DA0 = I8 I7 I6
AA2 AA1 AA0 = I5 I4 I3
BA2 BA1 BA0 = I2 I1 I0

33 3

BADA AA

July 30, 2003 Control units 16

Generating MB, MD, WR and MW

Last time we divided our instructions into four categories, saying that the
instructions in each category would require similar control signals.

Let’s take a look at the datapath control signals needed for the different
categories here.

11
10
01
00

Opcode bits 6-5

Branches and jumps
Immediate ALU operations
Data transfer operations
Register-format ALU operations

Instruction category

July 30, 2003 Control units 17

Register-format ALU operations

D

Register file

A B

DA

AA BA

A B

ALU

F

FS
V
C
N
Z

1 0
Mux B

MB
0

0 1
Mux D

MD
0

ADRS DATA

Data RAM

OUT

MW
0

constant

WR
1

ADD R1, R2, R3

All register ALU operations
need the same values for the
following control signals.
— MB = 0 since the operands

all come from the register
file.

— MD = 0 and WR = 1 to save
the ALU result back into a
register.

— MW = 0 ensures that RAM
is not modified.

July 30, 2003 Control units 18

Immediate-format ALU operations

D

Register file

A B

DA

AA BA

A B

ALU

F

FS
V
C
N
Z

1 0
Mux B

MB
1

0 1
Mux D

MD
0

ADRS DATA

Data RAM

OUT

MW
0

constant

WR
1

SUB R1, R2, #2

Immediate ALU operations
are similar, except for the MB
signal.
— MB = 1 since the second

operand is a constant.
— MD = 0 and WR = 1 to save

the ALU result back into a
register.

— MW = 0 ensures that RAM
is not modified.

July 30, 2003 Control units 19

Memory read

ADRS DATA

Data RAM

OUT

D

Register file

A B

DA

AA BA

A B

ALU

F

FS
V
C
N
Z

1 0
Mux B

MB
X

0 1
Mux D

MD
1

MW
0

constant

WR
1

LD (R1), R2

A memory read requires the
following datapath signals.
— MB = X since there is no

second operand.
— MD = 1 and WR = 1 so the

RAM output can be written
to the register file.

— MW = 0 because we are
only reading from RAM.

July 30, 2003 Control units 20

Memory write

D

Register file

A B

DA

AA BA

A B

ALU

F

FS
V
C
N
Z

1 0
Mux B

MB
0

0 1
Mux D

MD
X

ADRS DATA

Data RAM

OUT

MW
1

constant

WR
0

ST (R1), R2

A memory write needs the
following datapath signals.
— MB = 0 because the data

to store comes from the
register file.

— MD = X and WR = 0, since
none of the registers are
changed.

— MW = 1 to update RAM.

July 30, 2003 Control units 21

Jumps and branches

D

Register file

A B

DA

AA BA

A B

ALU

F

FS
V
C
N
Z

1 0
Mux B

MB
X

0 1
Mux D

MD
X

ADRS DATA

Data RAM

OUT

MW
0

constant

WR
0

BZ R2, +19
JMP -5

Jumps and branches shouldn’t
alter the registers or memory,
so we must be careful to set
WR and MW explicitly.
— MB and MD are both don’t

cares.
— WR = 0 ensures none of

the registers are changed.
— MW = 0 ensures nothing in

memory is changed either.

July 30, 2003 Control units 22

MB, MD, WR and MW

The following table summarizes the correct values of MB, MD, WR and MW
for each of the different instruction categories we defined.

This is the sense in which these categories contain “similar” instructions.

0

0

00XXBranches and jumps

101Immediate ALU instructions

011XLD

10X0STData transfer
operations

100Register ALU instructions

MWWRMDMB

Control signals

Category

July 30, 2003 Control units 23

Generating MB, MD, WR, and MW

X

X

1

0

X

13

1

0

1

1

0

14

1

1

0

0

0

15

Instruction bits

0

0

00XXBranches and jumps

101Immediate ALU instructions

011XLD

10X0STData transfer
operations

100Register ALU instructions

MWWRMDMB

Control signals

Category

Remember that instructions in the same category all begin with the same
two or three opcode bits.
Thus, the datapath control signals MB, MD, WR and MW can be expressed
as functions of the first three opcode bits, or instruction bits I15 to I13.

MB = I15 MD = I14

WR = I14’ + I15’ I13 MW = I15’ I14 I13’

July 30, 2003 Control units 24

Generating FS

Yesterday we used the ALU function selection code as the last five bits in
the opcodes for register- and immediate-format ALU instructions.
For example, a register-based XOR has the opcode 0001100.
— The first two bits 00 indicate a register-based ALU instruction.
— 01100 is the ALU function selection code for the XOR operation.

So we can send the function selection code from a register or immediate
format instruction directly to the datapath’s FS control input.

15 01234567891011121314
SB/OPSADROpcode

5

FS

FS4 FS3 FS2 FS1 FS0 = I13 I12 I11 I10 I9

July 30, 2003 Control units 25

Immediate loads

FS should be a don’t-care for
most of the other instructions,
which do not involve the ALU.
However the ALU is needed for
immediate load operations.

LD R2, #3

The constant value must pass
through Mux B, the ALU, and
Mux D before it gets back to
the register file.
The easiest way to handle this
is to treat immediate loads as
immediate ALU operations with
the opcode 1010000, using the
ALU transfer operation “G = B.”

D

Register file

A B

WR

DA

AA BA

A B

ALU

F

FS
V
C
N
Z

1 0
Mux B

MB
1

0 1
Mux D

MD
0

ADRS DATA

Data RAM

OUT

MW

constant
011

10000

1

10

July 30, 2003 Control units 26

The branch control unit

Next, let’s see how to manage the
control flow of a program.
The branch control unit needs a lot
of information about the current
instruction.
— Whether it’s a jump, a branch,

or some other instruction.
— For branches and jumps, the

target address.
— For branches, the exact branch

condition.
All of this can be generated by the
instruction decoder, which already
is processing the instruction words.

ADRS
Instruction

RAM

OUT

PC

Instruction Decoder

DA AA BA MB FS MD WR MW

Branch
Control

V
C
N
Z

July 30, 2003 Control units 27

Branch control unit inputs

Inputs J and B will be true if the
current instruction is a jump or
branch, respectively.
BC will indicate the exact branch
condition, for branch instructions.
AD will be the address offset, used
for both branches and jumps. The
current PC is also needed, since we
use PC-relative addressing.
Status bits V, C, N and Z come
from the ALU in the datapath, and
will determine whether or not a
branch is taken.

ADRS
Instruction

RAM

OUT

PC

Instruction Decoder

DA AA BA MB FS MD WR MW

Branch
Control

V
C
N
Z

J B BC AD

CodeBranchCodeBranch

BNZ
BNV
BNN
BNC

111
110
101
100

BZ
BV
BN
BC

011
010
001
000

July 30, 2003 Control units 28

Generating J and B

The instruction decoder generates J and B from instruction opcodes.

Remember that branch opcodes all begin with 110, and the opcode for
JMP begins with bits 111.
So it’s easy to see the equations for J and B.

J = I15 I14 I13 B = I15 I14 I13’

XXXX111JMP

BCX011Branches

9101112131415

Instruction bits

July 30, 2003 Control units 29

Generating BC and AD

We defined the branch opcodes so they already contain the branch type,
so BC can come straight from the instruction opcode.
AD can also be taken directly out of the instruction.

0123456789101112131415
AD2-AD0SAAD5-AD3Opcode

3

BC

3

AD

3

AD

BC2 BC1 BC0 = I11 I10 I9
AD5 AD4 AD3 AD2 AD1 AD0 = I8 I7 I6 I2 I1 I0

July 30, 2003 Control units 30

Branch control unit outputs

The branch control unit uses all
of its inputs to generate just two
outputs for controlling the PC.
A LOAD signal will be 0 when the
PC should just increment, or 1
when the PC has to load a target
address for a branch or jump.
A DATA value contains the target
address for the PC, for branches
that are taken and jumps.

ADRS
Instruction

RAM

OUT

PC

Instruction Decoder

DA AA BA MB FS MD WR MW

Branch
Control

V
C
N
Z

J B BC AD

DATA

LOAD

July 30, 2003 Control units 31

Generating LOAD and DATA

PC
Branch
Control

V
C
N
Z

J B BC AD

DATA

LOAD

There are three possible next states of the program counter, depending
on the values of J and B.
If J = 0 and B = 0, the current instruction is not a jump or branch, so the
PC should just increment and go on to the next instruction.
If J = 1, the current instruction is JMP.
— We use PC-relative addressing, so the branch control unit should add

the address offset AD to the current value of PC, and store that back
into the program counter.

— Remember that AD is signed, so we can jump forwards or backwards.

July 30, 2003 Control units 32

Generating LOAD and DATA for branches

PC
Branch
Control

V
C
N
Z

J B BC AD

DATA

LOAD

If B = 1, the current instruction is a conditional branch.
The branch control unit first determines if the branch should be taken.
— It checks the type of branch (BC) and the status bits (VCNZ).
— For example, if BC = 011 (branch if zero) and Z = 1, then the branch

condition is true and the branch should be taken.
Then the branch control unit sets the PC appropriately.
— If the branch is taken, AD is added to the PC, just as for jumps.
— Otherwise the PC is simply incremented, as for normal instructions.

July 30, 2003 Control units 33

FS for branch instructions

One last detail is that branches
depend on the ALU to produce
the status bits appropriately.
For example, in the instruction

BZ R2, +19

the contents of R2 have to go
through the ALU just so that Z
will be set appropriately.
For our branches, we just need
the ALU function “G = A” with
FS = 00000 or 00111.

D

Register file

A B

WR

DA

AA BA

A B

ALU

F

FS
V
C
N
Z

1 0
Mux B

MB

0 1
Mux D

MD

ADRS DATA

Data RAM

OUT

MW

constant

00000

July 30, 2003 Control units 34

Summary

Today we saw an outline of a processor’s control unit hardware.
— The program counter addresses an instruction memory, which holds a

machine language program.
— An instruction decoder takes instructions and generates the matching

control signal inputs for the datapath and a branching unit.
— The branch control unit handles instruction sequencing.

Control unit implementations depend heavily on both the instruction set
architecture and the datapath.
— Careful selection of opcodes and instruction formats can make the

control unit hardware simpler.
— In MP4 you’ll design the control unit for a slightly different processor.

We now have a whole processor! This is the culmination of everything we
did this semester, starting from those tiny little primitive gates.

	Control units
	Datapath review
	Instruction set review
	Instruction format review
	Opcode review
	Block diagram of a processor
	Where does the program go?
	What is the current instruction?
	How do binary instructions get executed?
	What instruction should be executed next?
	The whole control unit
	The whole processor
	Implementing the instruction decoder
	Generating DA, AA, BA
	Don’t-care conditions
	Generating MB, MD, WR and MW
	Register-format ALU operations
	Immediate-format ALU operations
	Memory read
	Memory write
	Jumps and branches
	MB, MD, WR and MW
	Generating MB, MD, WR, and MW
	Generating FS
	Immediate loads
	The branch control unit
	Branch control unit inputs
	Generating J and B
	Generating BC and AD
	Branch control unit outputs
	Generating LOAD and DATA
	Generating LOAD and DATA for branches
	FS for branch instructions
	Summary

		hhuang@cs.uiuc.edu
	2003-07-28T23:56:00-0500
	Urbana, Illinois
	Howard Huang
	I am the author of this document

