
July 23, 2003 ©2000-2003 Howard Huang 1

Instruction set architectures

Yesterday we built a simple, but complete, datapath.
The datapath is ultimately controlled by a program, so today we’ll look at
programming in more detail.
— We’ll talk about how high-level programs are executed on processors.
— Then we will also introduce a sample instruction set architecture for

our datapath from yesterday, and present some example programs.
Next week we’ll finish our processor by designing the control unit, which
converts program instructions into signals for the datapath.

July 23, 2003 Instruction set architectures 2

Programming and CPUs

Programs written in a high-level
language like C++ must be compiled
to produce an executable program.
The result is a CPU-specific machine
language program that can be loaded
into memory and executed by the
processor.
CS231 focuses on stuff below the
dotted blue line, but machine
language serves as the interface
between hardware and software.

Datapath

High-level program

Executable file

Control words

Compiler

Control Unit
Hardware

Software

July 23, 2003 Instruction set architectures 3

Some CPUs

AMD and Intel make 8086-compatible chips
that use the same machine language but are
implemented in very different ways.

The CSIL labs have a lot of Sun workstations,
which use Sun UltraSPARC processors.

IBM and Motorola both manufacture PowerPC
processors, which appear in Apple Macintosh
computers and Nintendo’s GameCube.

MIPS designs processors that are used in SGI
computers, the Sony Playstation 2, and other
places...

July 23, 2003 Instruction set architectures 4

High-level languages

High-level languages provide many useful programming constructs.
— For, while, and do loops
— If-then-else statements
— Functions and procedures for code abstraction
— Variables and arrays for storage

Many languages provide safety features as well.
— Static or dynamic typechecking
— Garbage collection

High-level languages are also relatively portable.Theoretically, you can
write one program and compile it for many different processors.
It may be hard to understand what’s so “high-level” about languages like
Java or C++ until you compare them with...

July 23, 2003 Instruction set architectures 5

Low-level languages

Every CPU has a low-level instruction set, or machine language, which
closely reflects that processor’s design.
Unfortunately, this means instruction sets are not easy for humans to
work with!
— Control flow is limited to “jump” and “branch” instructions, which

you must use to make your own loops and conditionals.
— Support for functions and procedures may be limited.
— Memory addresses must be explicitly specified. You can’t just declare

new variables and use them!
— Very little error checking is done for machine language code.
— It’s difficult to convert machine language programs written for one

processor to another.
Later we’ll look at some rough translations from C to machine language.

July 23, 2003 Instruction set architectures 6

Compilers

Compilers are used to translate high-level programs into machine code.
In the good old days, people often wrote machine language programs by
hand to make their programs faster, smaller, or both.
Now, compilers almost always do a better job than people.
— Programs are becoming more complex, and it’s hard for humans to

write and maintain large, efficient machine language code.
— CPUs are becoming more complex. It’s difficult to write code that

takes full advantage of a processor’s features.

July 23, 2003 Instruction set architectures 7

Interpreted languages

There are also many interpreted languages.
— Java, Python and Perl are probably the most popular examples.
— Others include Lisp, Smalltalk, Prolog.

Interpreted languages take a middle ground.
— Instead of being compiled directly to machine language, programs are

compiled to produce an intermediate code, like Java bytecode.
— The intermediate code is executed by an interpreter, such as the Java

virtual machine.
This approach tries to balance portability and efficiency.
— Java bytecode can be executed on any processor and operating system

that has a Java virtual machine.
— The final interpretation step is still faster than a full compilation.

July 23, 2003 Instruction set architectures 8

Assembly and machine languages

Machine language instructions are sequences of bits in a specific order.
To make things simpler, people typically use assembly language.
— We assign mnemonic names to operations and operands.
— There is nearly a one-to-one correspondence between these names

and machine instructions, so converting assembly code to machine
language is very easy.

We will use assembly code today to introduce the basic ideas, and switch
to machine language later when we talk about the control unit.

July 23, 2003 Instruction set architectures 9

Data manipulation instructions

Data manipulation instructions correspond to ALU operations.
For example, here is one possible assembly-language addition instruction,
and its equivalent using our register transfer notation.

This is similar to high-level programming statements like the following.

R0 = R1 + R2

Here, all of the operands are registers.

ADD R0, R1, R2

operation

destination sources

operands

R0 ← R1 + R2

Register transfer equivalent:

July 23, 2003 Instruction set architectures 10

More data manipulation instructions

Here are some other possible data manipulation instructions.

NOT R0, R1 R0 ← R1’
ADD R3, R3, #1 R3 ← R3 + 1
SUB R1, R2, #5 R1 ← R2 - 5

Some instructions, like the NOT, have only one operand.
In addition to register operands, constant operands like 1 and 5 are also
possible. Constants are sometimes denoted with a hash mark in front.

July 23, 2003 Instruction set architectures 11

Relation to the datapath

D data
Write

D address

A address B address

A data B data

Register File

WR

DA

AA BA

A B

ALU

F
Z
N
C
V

FSFS

S D1 D0
Q

Constant
MB

These instructions reflect the design of
our datapath from yesterday.
There are at most two source operands
in each instruction, since our ALU has
just two inputs. The sources can both be
registers, or they can be one register
and one constant.
Instructions have just one destination
operand, which must be a register.
More complex operations like

R0 ← R1 + R2 - 3

must be broken down into several lower-
level instructions.

July 23, 2003 Instruction set architectures 12

What about RAM?

D data
Write

D address

A address

A data B data

Register File

WR

DA

AA BA

D0

S

RAM

ADRS
DATA
CS
WR

OUT

MW
+5V

A B

ALU

F
Z
N
C
V

FSFS

MD

S D1 D0
Q

Constant
MB

B address

Q D1

Recall that our ALU has direct
access to the registers only.
RAM contents must be copied
to the registers before they
can be used as ALU operands.
Similarly, ALU results must go
through the registers before
they are stored into memory.
We rely on data movement
instructions to transfer data
between RAM and the register
file.

July 23, 2003 Instruction set architectures 13

Loading a register from RAM

D data
Write

D address

A address

A data B data

Register File

WR

DA

AA BA

RAM

ADRS
DATA
CS
WR

OUT

MW
+5V

A B

ALU

F
Z
N
C
V

FSFS

MD

S D1 D0
Q

Constant
MB

D0

S

B address

Q D1

A load instruction copies data
from a RAM address to one of
the registers.

LD R1,(R3) R1 ← M[R3]

Remember in our datapath
the RAM address must come
from one of the registers—in
the example above, R3.
The parentheses help show
which register operand holds
the memory address.

July 23, 2003 Instruction set architectures 14

Storing a register to RAM

D0

S

A B

ALU

F
Z
N
C
V

FSFS

MD

S D1 D0
Q

Constant
MB

RAM

ADRS
DATA
CS
WR

OUT

MW
+5V

D data
Write

D address

A address

A data B data

Register File

WR

DA

AA BAB address

Q D1

A store instruction copies
data from a register to an
address in RAM.

ST (R3),R1 M[R3]← R1

One register specifies the
RAM address to write to—in
the example above, R3.
The other operand specifies
the actual data to be stored
into RAM, like R1 above.

July 23, 2003 Instruction set architectures 15

Loading a register with a constant

D data
Write

D address

A address

A data B data

Register File

WR

DA

AA BA

D0

S

RAM

ADRS
DATA
CS
WR

OUT

MW
+5V

MD

S D1 D0
Q

Constant
MB

A B

ALU

F
Z
N
C
V

FSFS

B address

Q D1

With our datapath, it’s also
possible to load a constant
into the register file.

LD R1, #0 R1 ← 0

This ALU has a “transfer B”
operation (FS=10000) which
lets us pass a constant up to
the register file.
This gives us an easy way to
initialize registers.

July 23, 2003 Instruction set architectures 16

Storing a constant to RAM

D data
Write

D address

A address

A data B data

Register File

WR

DA

AA BA

D0

S

A B

ALU

F
Z
N
C
V

FSFS

MD

S D1 D0
Q

Constant
MB

RAM

ADRS
DATA
CS
WR

OUT

MW
+5V

B address

Q D1

And you can store a constant
value directly to RAM too.

ST (R3), #0 M[R3] ← 0

This provides an easy way to
initialize memory contents.

July 23, 2003 Instruction set architectures 17

A small example

Here’s an example register-transfer operation.

M[1000] ← M[1000] + 1

Below is the assembly-language equivalent.

An awful lot of assembly instructions are needed!
— For instance, we have to load the memory address 1000 into a register

first, and then use that register to access the RAM.
— This is due to our relatively simple datapath design, which only allows

register and constant operands to the ALU.
— In CS232 you’ll see more about why this can be a good thing.

LD R0, #1000 // R0 ← 1000
LD R3, (R0) // R3 ← M[1000]
ADD R3, R3, #1 // R3 ← R3 + 1
ST (R0), R3 // M[1000] ← R3

July 23, 2003 Instruction set architectures 18

Control flow instructions

Programs consist of a lot of sequential instructions, which are meant to
be executed one after another.
Thus, programs are stored in computer memory sequentially as well.
— Each program instruction occupies one address.
— Instructions are stored one after another.

A program counter (PC) keeps track of the current instruction address.
— Ordinarily, the PC just increments after executing each instruction.
— But sometimes we need to change this normal sequential behavior,

with special control flow instructions.

768: LD R0, #1000 // R0 ← 1000
769: LD R3, (R0) // R3 ← M[1000]
770: ADD R3, R3, #1 // R3 ← R3 + 1
771: ST (R0), R3 // M[1000] ← R3

July 23, 2003 Instruction set architectures 19

Jumps

A jump instruction always changes the value of the PC.
— The operand specifies exactly how to change the PC.
— For simplicity, we often use labels to denote actual addresses.

For example, a program can skip certain instructions.

You can also use jumps to repeat instructions.

LD R1, #10
LD R2, #3
JMP L

K LD R1, #20 // These two instructions
LD R2, #4 // would be skipped

L ADD R3, R3, R2
ST (R1), R3

LD R1, #0
F ADD R1, R1, #1

JMP F // An infinite loop!

July 23, 2003 Instruction set architectures 20

Branches

A branch instruction may change the PC, depending on whether a given
condition is true.

LD R1, #10
LD R2, #3
BZ R4, L // Jump to L if R4 == 0

K LD R1, #20 // These instructions may be
LD R2, #4 // skipped, depending on R4

L ADD R3, R3, R2
ST (R1), R3

July 23, 2003 Instruction set architectures 21

Types of branches

Branch conditions are often based on the ALU result.
This is what the ALU status bits V, C, N and Z are used for. With them we
can implement various branch instructions like the ones below.

Other branch conditions (e.g., branch if greater, equal or less) can be
derived from these, along with the right ALU operation.

Z = 0BNZBranch if not zero

Z = 1BZBranch if zero

N = 0BNNBranch if non-negative

N = 1BNBranch if negative

C = 0BNCBranch if carry clear

C = 1BCBranch if carry set

V = 0BNVBranch on no overflow

V = 1BVBranch on overflow

ALU status bitMnemonicCondition

July 23, 2003 Instruction set architectures 22

High-level control flow

These jumps and branches are much simpler than the control flow
constructs provided by high-level languages.
Conditional statements execute only if some Boolean value is true.

Loops cause some statements to be executed many times

// Find the absolute value of *X
R1 = *X;
if (R1 < 0)

R1 = -R1; // This might not be executed
R3 = R1 + R1;

// Sum the integers from 1 to 5
R1 = 0;
for (R2 = 1; R2 <= 5; R2++)

R1 = R1 + R2; // This executes five times
R3 = R1 + R1;

July 23, 2003 Instruction set architectures 23

Translating the C if-then statement

We can use branch instructions to translate high-level conditional
statements into assembly code.

Sometimes it’s easier to invert the original condition. Here, we
effectively changed the R1 < 0 test into R1 >= 0.

R1 = *X;
if (R1 < 0)

R1 = -R1;
R3 = R1 + R1;

LD R1, (X) // R1 = *X
BNN R1, L // Skip MUL if R1 is not negative
MUL R1, R1, #-1 // R1 = -R1

L ADD R3, R1, R1 // R3 = R1 + R1

July 23, 2003 Instruction set architectures 24

Translating the C for loop

Here is a translation of the for loop, using a hypothetical BGT branch.

R1 = 0;
for (R2 = 1; R2 <= 5; R2++)

R1 = R1 + R2;
R3 = R1 + R1;

LD R1, #0 // R1 = 0
LD R2, #1 // R2 = 1

FOR BGT R2, #5, L // Stop when R2 > 5
ADD R1, R1, R2 // R1 = R1 + R2
ADD R2, R2, #1 // R2++
JMP FOR // Go back to the loop test

L ADD R3, R1, R1 // R3 = R1 + R1

July 23, 2003 Instruction set architectures 25

Functions

Function calls and returns also affect a program’s control flow.
— The CPU must remember which instruction is being executed when

the function call is made, so it can return properly.
— There also needs to be some convention for passing arguments to a

function, and accepting return values from a function.
This is complicated by functions possibly calling other functions.
— Many return addresses need to be remembered.
— Processors have a limited number of registers, which must somehow

be shared by all functions.
For more information, you’ll have to take more classes! CS232 will talk
about functions in depth, for example.

July 23, 2003 Instruction set architectures 26

Summary

Machine language is the interface between software and processors.
High-level programs must be translated into machine language before
they can be executed.
There are three main categories of instructions.
— Data manipulation operations include the arithmetic instructions.
— Data transfer operations to data between registers and RAM
— Control flow instructions change the instruction execution order.

Instruction set architectures depend highly on the host CPU’s design.
— Today we saw instructions that are appropriate for our datapath.
— Next Monday we’ll look at some other possible architectures.

	Instruction set architectures
	Programming and CPUs
	Some CPUs
	High-level languages
	Low-level languages
	Compilers
	Interpreted languages
	Assembly and machine languages
	Data manipulation instructions
	More data manipulation instructions
	Relation to the datapath
	What about RAM?
	Loading a register from RAM
	Storing a register to RAM
	Loading a register with a constant
	Storing a constant to RAM
	A small example
	Control flow instructions
	Jumps
	Branches
	Types of branches
	High-level control flow
	Translating the C if-then statement
	Translating the C for loop
	Functions
	Summary

		hhuang@cs.uiuc.edu
	2003-07-22T01:26:37-0500
	Urbana, Illinois
	Howard Huang
	I am the author of this document

