Registers and counters

._ﬁ

= Today we’ll see two common sequential devices, registers and counters.

— First we’ll study some different kinds of registers and discuss how to
build them. Several example circuits are also shown.

— Then we’ll talk about counters in more detail, looking at both some
implementations and applications.

= These are not only examples of sequential analysis and design, but also
real devices used in larger circuits, as we’ll see in the coming weeks.

July 16, 2003 ©2000-2003 Howard Huang

Registers

= Flip-flops are limited because they can store only one bit.
— We had to use two flip-flops for most of our examples so far.

— Most computers work with integers and single-precision floating-point
numbers that are 32-bits long.

= A register is an extension of a flip-flop that can store multiple bits.
= Registers are commonly used as temporary storage in a processor.
— They are faster and more convenient than main memory.
— More registers can help speed up complex calculations.

= Later we’ll learn more about how registers are used in processors, and
some of the differences between registers and random-access memories
or RAM.

July 16, 2003 Registers and counters

A basic register

= Basic registers are easy to build. We can store multiple bits |

just by putting a bunch of flip-flops together! - D.?L}Eg,
= A 4-bit register from LogicWorks, Reg-4, is on the right, and —D2 Q2
s : o —D1 Q1
its internal implementation is below. D0 Qo

— This register uses D flip-flops, so it’s easy to store data C'|-R
without worrying about flip-flop input equations.

— All the flip-flops share a common CLK and CLR signal.

D3 D2 D1 DO
: Lﬂ Qr— [—Dcr- LTJQ— Lﬂ Q-
? CR CR CR CR
CLR — Dm T T T]
CLK -~ . . .
Q3 Q2 Q1 Q0

July 16, 2003 Registers and counters

Adding another operation

= The input D3-DO0 is copied to the output Q3-QO0 on every clock cycle.
= How can we store the current value for more than one cycle?
= Let’s try to add a load input signal LD to the register.

— If LD = 0, the register keeps its current contents.

— If LD = 1, the register stores a new value, taken from inputs D3-DO.

LD | Q(t+1)
0| Qt)
1 | D,-D,

July 16, 2003

D3 D2 D1 DO

CLR—
LD—
CLK—

Q3 Q2 Q1 Q0

Registers and counters

Clock gating

= We could implement the load ability by manipulating the CLK input, as
shown below.

— When LD = 0, the flip-flop C inputs are held at 1. There is no positive
clock edge, so the flip-flops keep their current values.

— When LD = 1, the CLK input passes through the OR gate, so all of the
flip-flops will receive a positive clock edge and can load a new value
from the D3-DO inputs.

D3 D2 D1 DO
D Q— D Q— D Q— D Q—
C R C R C R C R
CLR Da T T T T
LD —
CLK E * * *
Q3 Q2 Q1 Qo0

July 16, 2003 Registers and counters

Clock gating is bad

= This is called clock gating, since gates are added to the clock signal.

= There can be timing problems similar to those of latches. Here, LD must
be kept at 1 for the right length of time (one clock cycle) and no longer.

= The actual clock signhal is delayed a little bit by the OR gate.

— In more complex circuits, different flip-flops might receive the clock
signal at slightly different times.

— This clock skew can lead to synchronization problems.

D3 D2 D1 DO
D Q— D Q— D Q— D Q—
C R C R C R C R
CLR Da T T T T
LD —
CLK E * * *
Q3 Q2 Q1 Qo0

July 16, 2003 Registers and counters

A better parallel load

= Another idea is to modify the flip-flop D inputs and not the clock signal.

— When LD = 0 the flip-flop inputs are Q3-Q0, so each flip-flop keeps its
current value.

— When LD = 1 the flip-flop inputs are D3-D0, so this new value is loaded
into the register.

D3 D2 D1 DO
) e L L L L ..

=" S s s ol

D1Q D1QH D1QH Tl ok

:Q3— DO ‘ 02— DO a1—! Do

P QT N m D Q7

CRpr CRr C R Cr
s B a— ! i T
CLK - . | |

Q3 Q2 - o0

July 16, 2003 Registers and counters 7

Shift registers

= A shift register “shifts” its output once every clock cycle. Sl is an input
that supplies a new bit to shift “into” the register.

Sl D OF+——1D OF+———1D Or+—D O
e C C C
CLK F F F
Qo 01 Q2 Q3
= Here is one example transition.

Present State | Input [Next State

QO0-Q3 Sl Q0-Q3

0110 1 1011

= The current Q3 (0 in this example) will be lost on the next cycle.

July 16, 2003

Registers and counters

Shift direction

Sl

Qa0

Q1 Q2

Q3

= The circuit and example make it look like the register shifts “right.”

Present Q0-Q3 | SI

Next Q0-Q3

ABCD X

XABC

= But it all depends on your interpretation of the bits. If you regard Q3 as
the most significant bit, then the register appears to shift in the opposite

direction!

July 16, 2003

Present Q3-Q0 | SI

Next Q3-Q0

DCBA X

CBAX

Registers and counters

Shift registers with parallel load

= We can add a parallel load operation, just as we did for regular registers.

— When LD = 0 the flip-flop inputs will be SIQ0Q1Q2, so the register will
shift on the next positive clock edge.

— When LD = 1, the flip-flop inputs are DO-D3, and a new value is loaded
into the register on the next positive clock edge.

DO D1 D2 D3
i L L |
S S S S
D1 Q- D1 Q- D1 Q- D1 Q—
Sl DO Q0— DO Q1— DO Q2— DO
D Q— D Q] D Q— D Q—
C C C C
CLK — F 17 17
Qo Q1 Q2 Q3

July 16, 2003 Registers and counters 10

Shift registers in LogicWorks

= Here is a block symbol for the Shift Reg-4 from LogicWorks.

= |ts internal implementation is shown on the previous page, except the LD
input here is active-low instead.

— CLK

—C|LD

— Sl

—|D3 Q3—
—| D2 Q21—
— D1 Q11—
—| DO Q0 —

July 16, 2003 Registers and counters 11

Serial data transfer

= One application of shift registers is converting between serial data and
parallel data.

= Computers typically work with multi-bit quantities.
— ASCII text characters are 8 bits long.

— Integers, single-precision floating-point numbers, and screen pixels
are up to 32 bits long.

= But sometimes it’s necessary to send or receive data serially, one bit at a
time. For example, USB and Firewire devices such as keyboards, mice and
printers all transfer data serially.

h N

July 16, 2003 Registers and counters 12

Receiving serial data

= You can convert serial data to parallel data using a shift register.

— The serial device is connected to the register’s Sl input.

— Shift register outputs Q3-QO0 are connected to the parallel device.
= The serial device transmits one bit of data per clock cycle.

— These bits go into the Sl input of the shift register.

— After four clock cycles, the shift register will hold a four-bit word.
= The computer then reads all four bits at once from the Q3-QO0 outputs.

_ . —CLK
serial device (LD
—_— — |
— D3 Q3—
— D2 Q21—
— D1 Q11—
— D0 Q0—

computer

July 16, 2003 Registers and counters

Sending data serially

= To send data serially with a shift register, you can do the opposite.

— The parallel device is connected to the register’s D3-DO0 inputs.

— The shift register output Q3 is connected to the serial device.
= The computer first stores a four-bit word in the register, in one cycle.
= The serial device can then read the shift output.

— One bit appears on Q3 on each clock cycle.

— After four cycles, the entire four-bit word will have been sent.

serial device

computer — CLK
-/ LD
[~] SI - ;
aa —D3 Q33— &
R — D2 Q22— ﬁ
13 ' — D1 Q11— -—
FEAy. —D0 QO

July 16, 2003 Registers and counters 14

Serial addition

= A second example using shift registers is adding two n-bit numbers with
significantly less hardware than a standard adder.

= A four-bit ripple-carry adder contains four full adders, but note that the
addition really happens serially, one step at a time.

Add AO + BO + Cl to get SO and C1.

Add A1 + B1 + C1 to get S1 and C2.
Add A2 + B2 + C2 to get S2 and C3.
. Add A3 + B3 + C3 to get S3 and CO.

A W N =

B3 A3 B2 A2 B1 Al BO AQD

Y
Cout

S

X
Cin

C3

July 16, 2003

|
S3

Y
Cout

S

X
Cin

C2

|
S2

Y
Cout

S

X
Cin

C1

|
S

Registers and counters

Y
Cout

S

X
Cin

—Cl

|
S0

15

The basic setup for serial addition

= With shift registers, we can build an n-bit adder using only one full adder.
— Inputs A and B are contained in shift registers.
— Initially, the full adder computes AO + BO.

— On successive clock cycles, the values A and B are shifted to the right,
so the adder computes A1 + B1, A2 + B2, etc.

— The output S appears serially, one bit (S0, $1, S2, S3) per cycle.

Register A Register B
| am a shift register! | am a shift register!
Q3 Q2 Q1 Q0 Q3 Q2 Q0
| | | | | |
We assume these registers shift X Y
“right,” so QO(t+1) = Q1(t). — Cin Cout [—
S

July 16, 2003 Registers and counters 16

What about the carry?

= The carry out from one stage has to be added in the next stage.
= We need to add a D flip-flop as shown, so the carry out from one clock

cycle is saved and used as the carry in for the next cycle.

Register A

| am a shift register!

Q3 Q2 O Q0

Register B

| am a shift register!

July 16, 2003

Q3 Q2 O QO
| | |
X Y Carry
Cin Cout D O
S
C

Registers and counters

17

The big unit

= First, set INIT = 1 for one clock
cycle. This loads the initial
values of A and B into the shift
registers on top, and sets the D
flip-flop to 0 (the initial carry
in).

= When INIT =0, the registers will
begin shifting, and the full
adder results will be written to
register S one bit at a time.

= The addition is completed after
four clock cycles. The sum is
stored in S, and the carry out is
in the D flip-flop.

= Notice how we get the Shift
Reg-4 in LogicWorks to shift in
the proper direction.

July 16, 2003

Register A Register B
A3— DO Q0 — B3— DO Q0 —
A2— D1 Q1 — B2— D1 Q11—
Al— D2 Q2 — B1— D2 Q21—
AD0— D3 Q3 BO— D3 Q3
— Sl — Sl
INIT'—| LD INIT'—| LD
CLK—CLK CLK—CLK
FA |
X v Carry
—Cin Cout D QM
S CLK—CRr
INIT
Register S
Q0—S3
Sl g1—s2
CLK—CLK Q2351
Q3—S0
18

Registers and counters

Serial addition: the good, the bad and the ugly

R R R AR R R RO OO,
= There are several good things about these serial adders.

— Only one full adder is needed, regardless of the length of the numbers
being added. This can save a lot of circuitry.

— Similar ideas can be applied to make serial multipliers, but with even
more hardware savings.

= But there are some bad things too.

— Adding two n-bit numbers takes n cycles, but in real processors we’d
normally want the addition to be done in just one cycle.

— Combinational circuits can use more efficient carry-lookahead adders
instead of doing things purely sequentially.

July 16, 2003 Registers and counters 19

A simple two-bit counter

= On Monday we saw a circuit for the two-bit counter shown here.
— When X = 0, the next state is the same as the present state.
— When X = 1, the next state is one more than the present state.

= Counters are really just another type of register—they store a multi-bit
value (two bits in this case), and they support an increment operation.

0 0

00 01

1 1
1
?11; 10
0 0

July 16, 2003 Registers and counters 20

What are counters good for?

= Counters can act as simple clocks to keep track of time.

= You may need to record how many times something has happened.
— How many bits have been sent or received?
— How many steps have been performed in some computation?

= All processors contain a program counter, or PC.

— Programs consist of a list of instructions that are to be executed one
after another (for the most part).

— The PC keeps track of the instruction currently being executed.

— The PC increments once on each clock cycle, so the next instruction
can then be executed.

£

July 16, 2003 Registers and counters 21

Another simple counter example

Let’s try to design a slightly more advanced two-bit counter.
— Again, the counter outputs will be 00, 01, 10 and 11, and there is a
single input, X.
— When X = 0, the counter value should increment on each clock cycle.
But the value should decrement on successive cycles when X = 1.

We’ll need two flip-flops again. Here are the four possible states.

July 16, 2003 Registers and counters

22

The complete state diagram and table

Present State | Inputs [Next State

0 Q1 QO X Q1 QO
00 foD 0 0 0 0 1
Q 1 \}- 0 0 1 1 1
0 1 0 1 0
Of]1 1110 0 1 1 0 0
._\ 1 1 0 0 1 1
QQ« @ 1 0 1 0 1
0 1 1 0 0 0
1 1 1 1 0

July 16, 2003 Registers and counters

D flip-flop inputs

= |f we use D flip-flops, then the D inputs will just be the same as the
desired next states.

= Equations for the D flip-flop inputs are shown at the right.
= Notice the second equation. Why does DO = QO0’?

QO
Present State | Inputs [Next State Ol 11011
Q1 QO X Q1 Q0 Qi l1]0]|1]0
0 0 0 0 1 X
0 0 1 1 1
0 1 0 1 0 D1=Q1 ®Q0 & X
0 1 1 0 0
: o | o : : QO
1 0 1 0 1 11110710
1 1 0 0 0 Qt {1 {1100
1 1 1 1 0 X
DO = QO’

July 16, 2003 Registers and counters 24

The counter in LogicWorks

= Here are some D Flip Flop +5V
devices from LogicWorks. P T

= They have both normal and 0 o1 s | Of
complemented outputs, so we Q0 D S
can access QO0’ directly without L CRrQp—
using an inverter. (Q1’ is not T
needed in this example.)

= This circuit counts normally 4)
when Reset = 1. But when Reset T
is 0, the flip-flop outputs are oo'—p S oQ0
cleared to 00 immediately.

= There is no three-input XOR CRop—Q0
gate in LogicWorks so we’ve 1 . T
used a four-input version 0= Reset

instead, with one of the inputs
connected to 0.

July 16, 2003 Registers and counters

LogicWorks counters

= There are a couple of different counters available in LogicWorks.

» The simplest one, the Counter-4 Min, just increments once on each clock
cycle.

— This is a four-bit counter, with values ranging from 0000 to 1111.
— The only “input” is the clock signal.

Q3
Q2
Q1
—CLK QO

July 16, 2003 Registers and counters 26

More complex counters

= More complex counters are also possible. The full-featured LogicWorks
Counter-4 device below has several functions.

— It can count up or down, depending on whether the UP input is 1 or 0.
— You can clear the counter to 0000 asynchronously by setting CLR = 1.
— You can perform a parallel load of D3-DO when LD = 0.

— The active-low EN input enables or disables the counter.

— The “counter out” CO is normally 1, but becomes 0 when the counter
reaches its maximum value of 1111 (if UP = 1) or 0000 (if UP = 0).

— CLK
—UP CO
— CLR

D3 Q3
D2 Q2
D1 Q1
DO QO

LD
EN

b

July 16, 2003 Registers and counters 27

An 8-bit counter

As you might expect by now, we can use these
general counters to build other counters.

Here is an 8-bit counter made from two 4-bit
counters.

— The bottom device represents the least
significant four bits, while the top counter
represents the most significant four bits.

— When the bottom counter reaches 1111
(i.e., when CO = 0), it enables the top
counter for one cycle.

The two four-bit counters share clock and clear
inputs. Sharing the clock is important to ensure
that the two counters are synchronized with
respect to each other.

We’ve used Hex Display units here to view the
four-bit output as a single hexadecimal digit.

July 16, 2003 Registers and counters

IIIII T

I”_llllll T

A restricted 4-bit counter

= We can also make a counter that “starts” at some value besides 0000.

» In the diagram below, when CO = 0 the LD signal forces the next state to
be loaded from D3-DO0.

= The result is this counter wraps from 1111 to 0110 (instead of 0000).

July 16, 2003

Epupl _L
CLK

-
O f———UP CO
CLR
0—D3 Q3
1—D2 Q2 6
1—D1 o1
0—Do0 QO .
—a LD
+——EN

Registers and counters 29

Another restricted counter

= We can also make a circuit that counts up to only 1100, instead of 1111.

= Here, when the counter output reaches 1100, the NAND gate forces the
counter to load, so the next state becomes 0000.

.
~ _LCLI(
©4———UP CO—
CLR
0—D3 Q3%
0—D2 Q2 ’ C
0—D1 Q1 t
0—D0 QO .
—qLD l
* 3 EN

July 16, 2003 Registers and counters

Summary

= A register is made from several flip-flops, so it can store multi-bit values.
= There are many possible operations you can add to a basic register.

— A parallel load register can load multi-bit values in one clock cycle.

— Shift registers can shift their contents left or right on every cycle.

— Counters are register that can increment or decrement each cycle.

= Shift register applications include handling serial data transfers and doing
arithmetic operations like addition or multiplication.

= Counters are frequently used as simple clocks to keep track of time or the
number of occurrences of some event.

= As usual, larger registers and counters can be built from smaller ones.

July 16, 2003 Registers and counters 31

	Registers and counters
	Registers
	A basic register
	Adding another operation
	Clock gating
	Clock gating is bad
	A better parallel load
	Shift registers
	Shift direction
	Shift registers with parallel load
	Shift registers in LogicWorks
	Serial data transfer
	Receiving serial data
	Sending data serially
	Serial addition
	The basic setup for serial addition
	What about the carry?
	The big unit
	Serial addition: the good, the bad and the ugly
	A simple two-bit counter
	What are counters good for?
	Another simple counter example
	The complete state diagram and table
	D flip-flop inputs
	The counter in LogicWorks
	LogicWorks counters
	More complex counters
	An 8-bit counter
	A restricted 4-bit counter
	Another restricted counter
	Summary

		hhuang@cs.uiuc.edu
	2003-07-16T01:09:05-0500
	Urbana, Illinois
	Howard Huang
	I am the author of this document

