
July 15, 2003 ©2000-2003 Howard Huang 1

Sequential circuit design

Yesterday we focused on analyzing sequential circuits.
— We found the outputs and next states for all possible combinations of

inputs and current states.
— This information is summarized in a state table or a state diagram.

Today we’ll give some examples of sequential circuit design.
— We first make a state table or diagram to express the computation.
— Then we can turn that table or diagram into a sequential circuit.

July 15, 2003 Sequential circuit design 2

Sequential circuit design procedure

1. Make a state table based on the problem statement. The table should
show the present states, inputs, next states and outputs. (It may be
easier to draw a state diagram first, and then convert that to a table.)

2. Assign binary codes to all of the possible states. If you have n states, the
binary codes will need at least log2 n digits, and the circuit will have at
least log2 n flip-flops.

3. For each flip-flop and each row of the state table, find the flip-flop input
values that will generate the next state from the present state. You can
use flip-flop excitation tables to help you here.

4. Derive simplified equations for the flip-flop inputs and the outputs.

5. Build the circuit!

July 15, 2003 Sequential circuit design 3

Sequence recognizers

A sequence recognizer looks for a special bit pattern in some input.
The recognizer circuit has only one input, X.
— One bit of input is supplied on each clock cycle. For example, it would

take 20 clock cycles to enter and scan a 20-bit sequence.
— This is an easy way to permit arbitrarily long input sequences.

There is one output Z, which is 1 when the desired pattern is found.
Our example will detect the bit pattern “1001”.

Inputs: 1 11 00 1 10 1 00 10 0 11 0…
Outputs: 0 00 00 1 00 0 00 10 0 10 0…

Here, one input and one output bit appear on each clock cycle.
This requires a sequential circuit because the circuit has to “remember”
the inputs from previous clock cycles, in order to determine whether or
not a match is found.

July 15, 2003 Sequential circuit design 4

Step 1: Making a state table

The first thing you have to figure out is precisely how the use of state will
help you solve the given problem.
— Make a state table based on the problem statement. The table should

show the present states, inputs, next states and outputs.
— Sometimes it may be easier to come up with a state diagram first and

then convert that to a table.
This is usually the most difficult step. Once you have the state table, the
rest of the design procedure is the same for all sequential circuits.
Sequence recognizers are one of the harder examples we will see in this
class, so if you understand this you’re in good shape.

July 15, 2003 Sequential circuit design 5

A basic state diagram

What state do we need for the sequence recognizer?
— We have to “remember” inputs from previous clock cycles.
— For example, if the previous three inputs were 100 and the current

input is 1, then the output should be 1.
— In general, we will have to remember occurrences of parts of the

desired pattern—in this case, 1, 10, and 100.
We’ll start with a basic state diagram.

A B C D
1/0 0/0 0/0

We’ve already seen the first three bits (100) of the desired patternD
We’ve already seen the first two bits (10) of the desired patternC
We’ve already seen the first bit (1) of the desired patternB
None of the desired pattern (1001) has been entered yetA

MeaningState

July 15, 2003 Sequential circuit design 6

Overlapping occurrences of the pattern

What happens if we’re in state D (the last three inputs were 100), and
the current input is 1?
— The output should be a 1, because we’ve found the desired pattern.
— But this last 1 could also be the start of another occurrence of the

pattern! For example, 1001001 contains two occurrences of 1001.
— To properly detect overlapping occurrences of the pattern, the next

state should be B.

A B C D
1/0 0/0 0/0

1/1

We’ve already seen the first three bits (100) of the desired patternD
We’ve already seen the first two bits (10) of the desired patternC
We’ve already seen the first bit (1) of the desired patternB
None of the desired pattern (1001) has been entered yetA

MeaningState

July 15, 2003 Sequential circuit design 7

Filling in the other arrows

Remember that we need two outgoing arrows for each node, to account
for the two input possibilities of X = 0 and X = 1.
The remaining arrows we need are shown in blue. They also allow for the
correct detection of overlapping occurrences of 1001.

A B C D
1/0 0/0 0/0

1/1

0/0

0/0

1/0

1/0

We’ve already seen the first three bits (100) of the desired patternD
We’ve already seen the first two bits (10) of the desired patternC
We’ve already seen the first bit (1) of the desired patternB
None of the desired pattern (1001) has been entered yetA

MeaningState

July 15, 2003 Sequential circuit design 8

Finally, making the state table

0/0
A B C D

1/0 0/0

1/1

0/0

0/0

1/0

1/0

1B1D
0A0D

0B1C
0D0C

0B1B
0C0B

0B1A
0A0A

Output
Next
StateInput

Present
State

Remember how the state diagram
arrows correspond to rows of the
state table.

input/outputpresent
state

next
state

July 15, 2003 Sequential circuit design 9

Step 2: Assigning binary codes to states

We have four states ABCD, so we need at least two flip-flops Q1Q0.
The easiest thing is to represent state A with Q1Q0 = 00, B with 01, C with
10, and D with 11. (You could have used these codes in Step 1 too, rather
than using temporary state labels like ABCD.)
The state assignment can have a big impact on circuit complexity, but we
won’t worry about that too much in this class.

Output
Next
StateInput

Present
State

ZQ0Q1XQ0Q1

1
1

0
0

1
1

0
0

1
0

1
1

1
0

1
0

1011
0001

0011
0101

0010
0100

0010
0000

1B1D
0A0D

0B1C
0D0C

0B1B
0C0B

0B1A
0A0A

Output
Next
StateInput

Present
State

July 15, 2003 Sequential circuit design 10

Step 3: Finding flip-flop input values

Next we have to figure out how to actually make the flip-flops change
from their present state into the desired next state.
This depends on what kind of flip-flops you use! We’ll use two JKs here.
For each flip-flip Qi, look at its present and next states, and determine
what the inputs Ji and Ki should be in order to make that state change.

J0 K0J1

Flip-flop Inputs
K1

Output
Next
StateInput

Present
State

ZQ0Q1XQ0Q1

1
1

0
0

1
1

0
0

1
0

1
1

1
0

1
0

1011
0001

0011
0101

0010
0100

0010
0000

July 15, 2003 Sequential circuit design 11

Finding JK flip-flop input values

For JK flip-flops, this is a little tricky. Recall the JK characteristic table.

If the present state of a JK flip-flop is 0 and we want the next state to be
1, then we have two choices for the JK inputs.
— We can use JK = 10, to explicitly set the flip-flop’s next state to 1.
— We can also use JK = 11, to complement the current state 0.

So to change from 0 to 1 we must set J = 1, but K could be either 0 or 1.
Similarly, the other three possible state transitions can all be done in two
different ways as well.

ComplementQ’(t)11
Set101
Reset010
No changeQ(t)00

OperationQ(t+1)KJ

July 15, 2003 Sequential circuit design 12

JK excitation table

An excitation table shows what flip-flop inputs are required in order to
make a desired state change.

This is the same information that’s given in the characteristic table, but
presented “backwards.”

No change/Set0x11
Reset/Complement1x01
Set/Complementx110
No change/Resetx000

OperationKJQ(t+1)Q(t)

ComplementQ’(t)11
Set101
Reset010
No changeQ(t)00

OperationQ(t+1)KJ

July 15, 2003 Sequential circuit design 13

Excitation tables for all flip-flops

Set111
Reset001
Set110
Reset000

OperationDQ(t+1)Q(t)

No change/Set0x11
Reset/Complement1x01
Set/Complementx110
No change/Resetx000

OperationKJQ(t+1)Q(t)

No change011
Complement101
Complement110
No change000

OperationTQ(t+1)Q(t)

July 15, 2003 Sequential circuit design 14

Back to the example

We can now use the JK excitation table on the
right to find the correct values for each flip-
flop’s inputs, based on its present and next
states.

0x11
1x01
x110
x000

KJQ(t+1)Q(t)

x
x

1
1

x
x

1
0

J0

0
1

x
x

0
1

x
x

K0

x
x

x
x

0
1

0
0

J1

Flip-flop Inputs

1
1

1
0

x
x

x
x

K1

Output
Next
StateInput

Present
State

ZQ0Q1XQ0Q1

1
1

0
0

1
1

0
0

1
0

1
1

1
0

1
0

1011
0001

0011
0101

0010
0100

0010
0000

July 15, 2003 Sequential circuit design 15

Step 4: Find equations for the FF inputs and output

Now you can make K-maps and find equations for each of the four flip-
flop inputs, as well as for the output Z.
These equations are in terms of the present state and the inputs.
The advantage of using JK flip-flops is that there are many don’t care
conditions, which can result in simpler MSP equations.

J1 = X’Q0

K1 = X + Q0

J0 = X + Q1

K0 = X’

Z = Q1Q0Xx
x

1
1

x
x

1
0

J0

0
1

x
x

0
1

x
x

K0

x
x

x
x

0
1

0
0

J1

Flip-flop Inputs

1
1

1
0

x
x

x
x

K1

Output
Next
StateInput

Present
State

ZQ0Q1XQ0Q1

1
1

0
0

1
1

0
0

1
0

1
1

1
0

1
0

1011
0001

0011
0101

0010
0100

0010
0000

July 15, 2003 Sequential circuit design 16

Step 5: Build the circuit

Hey! It’s the same circuit we
saw yesterday. Tricky Howard!
Now you can see that this
circuit detects occurrences of
the pattern 1001 in a serial
input stream X.

J1 = X’Q0
K1 = X + Q0

J0 = X + Q1
K0 = X’

Z = Q1Q0X

July 15, 2003 Sequential circuit design 17

Timing diagram

Here is one example timing diagram for our sequence detector.
— The flip-flops Q1Q0 start in the initial state, 00.
— On the first three positive clock edges, X is 1, 0, and 0. These inputs

cause Q1Q0 to change, so after the third edge Q1Q0 = 11.
— Then when X = 1, Z becomes 1 also, meaning that 1001 was found.

The output Z does not necessarily change at only positive clock edges; it
can change whenever X changes, since Z = Q1Q0X.

CLK

Q1

Q0

X

Z

1 2 3 4

July 15, 2003 Sequential circuit design 18

Building the same circuit with D flip-flops

What if you want to build the circuit using D flip-flops instead?
We already have the state table and state assignments, so we can just
start from Step 3, finding the flip-flop input values.
D flip-flops have only one input, so our table only needs two columns for
D1 and D0.

D0D1

Flip-flop
Inputs Output

Next
StateInput

Present
State

ZQ0Q1XQ0Q1

1
1

0
0

1
1

0
0

1
0

1
1

1
0

1
0

1011
0001

0011
0101

0010
0100

0010
0000

July 15, 2003 Sequential circuit design 19

D flip-flop input values (Step 3)

The D excitation table is pretty boring;
you just set the D input to whatever the
next state should be.
You don’t even need to show separate
columns for D1 and D0—they will always
be the same as the Next State columns. Set111

Reset001
Set110
Reset000

OperationDQ(t+1)Q(t)

1
0

1
1

1
0

1
0

D0

0
0

0
1

0
1

0
0

D1

Flip-flop
Inputs Output

Next
StateInput

Present
State

ZQ0Q1XQ0Q1

1
1

0
0

1
1

0
0

1
0

1
1

1
0

1
0

1011
0001

0011
0101

0010
0100

0010
0000

July 15, 2003 Sequential circuit design 20

Finding equations (Step 4)

If you use K-maps again, you should find the following equations.

D1 = Q1Q0’X’ + Q1’Q0X’
D0 = X + Q1Q0’
Z = Q1Q0X

1
0

1
1

1
0

1
0

D0

0
0

0
1

0
1

0
0

D1

Flip-flop
Inputs Output

Next
StateInput

Present
State

ZQ0Q1XQ0Q1

1
1

0
0

1
1

0
0

1
0

1
1

1
0

1
0

1011
0001

0011
0101

0010
0100

0010
0000

July 15, 2003 Sequential circuit design 21

Building the circuit (Step 5)

July 15, 2003 Sequential circuit design 22

Flip-flop comparison

JK flip-flops are good because there are many don’t care
values in the flip-flop inputs, which can lead to a simpler
circuit.

D flip-flops have the advantage that you don’t have to set
up flip-flop inputs at all, since Q(t+1) = D. However, the D
input equations are usually more complex than JK input
equations.

In practice, D flip-flops are used more often.
— There is only one input for each flip-flop, not two.
— There are no excitation tables to worry about.
— D flip-flops themselves are simpler to implement than

JK flip-flops.

July 15, 2003 Sequential circuit design 23

Summary

The basic sequential circuit design procedure has five steps.
1. Make a state table and, if needed, a state diagram.
2. Assign binary codes to the states (if you didn’t already).
3. Use the present states, next states, and flip-flop excitation tables to

find the correct flip-flop input values.
4. Write simplified equations for the flip-flop inputs and outputs.
5. Build the circuit.

Tomorrow we’ll look at more examples of sequential circuits, including
different types of registers and counters.

	Sequential circuit design
	Sequential circuit design procedure
	Sequence recognizers
	Step 1: Making a state table
	A basic state diagram
	Overlapping occurrences of the pattern
	Filling in the other arrows
	Finally, making the state table
	Step 2: Assigning binary codes to states
	Step 3: Finding flip-flop input values
	Finding JK flip-flop input values
	JK excitation table
	Excitation tables for all flip-flops
	Back to the example
	Step 4: Find equations for the FF inputs and output
	Step 5: Build the circuit
	Timing diagram
	Building the same circuit with D flip-flops
	D flip-flop input values (Step 3)
	Finding equations (Step 4)
	Building the circuit (Step 5)
	Flip-flop comparison
	Summary

		hhuang@cs.uiuc.edu
	2003-07-13T15:57:54-0500
	Urbana, Illinois
	Howard Huang
	I am the author of this document

