Sequential circuit analysis

- Last week we started talking about memory.
 - The outputs of a sequential circuit depend on not only the inputs, but also on what's stored in the circuit's memory.
 - Latches and flip-flops are basic one-bit memory units.
- Today we'll finish up our discussion of flip-flops.
 - There are several variations of our basic flip-flop from last week.
 - Understanding the timing of flip-flops is important.
- Then we'll also see some examples of sequential circuits, and learn how to analyze and describe them.

A positive edge-triggered D flip-flop

- The flip-flop output Q changes only *after* the positive edge of C.
- The change is based on the flip-flop input value D that was present at the positive edge of the clock signal.
- A D flip-flop behaves like a D latch except for its positive edge-triggered nature, which is not explicit in the table below.

С	D	Q
0	Х	No change
1	0	0 (reset)
1	1	1 (set)

Direct inputs

- Most flip-flops also provide direct inputs, or asynchronous inputs, that let you immediately set or clear the state, regardless of the clock input.
- Such inputs are especially useful for setting the initial state of a flip-flop.
- Here is a LogicWorks D flip-flop with active-low direct inputs.

S'	R'	C	D	Q	
0	0	Х	X	Avoid	
0	1	Х	Х	1 (set)	-
1	0	Х	Χ	0 (reset)]_
1	1	0	Х	No change	-
1	1	1	0	0 (reset)	
1	1	1	1	1 (set)	

Direct inputs set or reset the flip-flop asynchronously

Set S'R' = 11 for normal operation of the flip-flop

Flip-flop variations

- We can make different versions of flip-flops based on the D flip-flop, just like we made different latches based on the S'R' latch.
- The JK flip-flop has inputs that act like S and R, but JK = 11 complements the flip-flop's current state.

C	J	Κ	Q _{next}
0	Х	х	No change
1	0	0	No change
1	0	1	0 (reset)
1	1	0	1 (set)
1	1	1	Q' _{current}

• A T flip-flop can only maintain or complement its current state.

С	Т	Q _{next}
0	Х	No change
1	0	No change
1	1	Q' _{current}

Characteristic tables

- The tables that we've made so far are called characteristic tables.
 - They show the next state Q(t+1) in terms of the current state Q(t) and the inputs.
 - For simplicity, the control input C is usually not listed.
 - Again, these tables don't indicate the positive edge-triggered nature of the flip-flops.

D	Q(t+1)	Operation
0	0	Reset
1	1	Set

J	Κ	Q(t+1)	Operation
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(t)	Complement

Т	Q(t+1)	Operation
0	Q(t)	No change
1	Q'(t)	Complement

Characteristic equations

We can also write characteristic equations, where the next state Q(t+1) is defined in terms of the current state Q(t) and the flip-flop inputs.

D	Q(t+1)	Operation
0	0	Reset
1	1	Set

J	Κ	Q(t+1)	Operation
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(t)	Complement

Т	Q(t+1)	Operation
0	Q(t)	No change
1	Q'(t)	Complement

Q(t+1) = D

Q(t+1) = K'Q(t) + JQ'(t)

Q(t+1) = T'Q(t) + TQ'(t) $= T \oplus Q(t)$

Flip-flop timing diagrams

- "Present state" and "next state" are relative terms.
- In the example JK flip-flop timing diagram on the left, you can see that at the first positive clock edge, JK = 11 and Q(1) = 1.
- We can use this information to find the next state, Q(2) = Q(1)'.
- Q(2) changes right after the positive clock edge, as shown to the right.
 The flip-flop will not change again until the next positive clock edge.

"Present" and "next" are relative

- Similarly, the values of J, K and Q at the second positive clock edge can be used to find the value of Q during the third clock cycle.
- When we do this, Q(2) is now referred to as the "present" state, and Q(3) becomes the "next" state.

Positive edge triggered

- One final point to repeat again one more time: the flip-flop outputs are affected only by the input values at the positive clock edge.
 - In the diagram below, K changes rapidly between the second and third positive edges.
 - But only the inputs at the third positive clock edge (JK = 01 and Q = 1) will affect the next state. Here, this means Q changes to 0.
- This is a fairly simple timing model. In real life there are also "setup" and and "hold" times that account for various propagation delays.

Flip-flop review

Flip-flops

C	Characteristic tables			
D	Q(t+1)	Operation		
0	0	Reset		
1	1	Set		

Characteristic equations

Q(t+1) = D

J	Κ	Q(t+1)	Operation
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(t)	Complement

Q(t+1) = K'Q(t) + JQ'(t)

Т	Q(t+1)	Operation
0	Q(t)	No change
1	Q'(t)	Complement

 $Q(t+1) = T \oplus Q(t)$

What do sequential circuits look like?

- Here is a sequential circuit with two JK flip-flops. There is one input X and one output Z.
- The values of the flip-flops (Q₁Q₀) form the state, or the memory, of the circuit.
- The flip-flop outputs also go back into the primitive gates on the left. This matches the abstract sequential circuit diagram at the bottom.

How do you analyze a sequential circuit?

- We can analyze a combinational circuit by deriving a truth table, which shows how the circuit outputs are generated from its inputs.
- But in a sequential circuit, the outputs are dependent upon not only the inputs, but also the current state of the flip-flops. So to understand how a sequential circuit works, we have to know how the memory changes.
- A state table is the sequential analog of a truth table. It shows inputs *and* current states on the left, and outputs *and* next states on the right.
- We saw an example of a state table last week, for an SR latch.

Inp	outs	Cur	rent	Ne	ext
S	R	Q	Q'	Q	Q'
0	0	0	1	0	1
0	0	1	0	1	0
0	1	0	1	0	1
0	1	1	0	0	1
1	0	0	1	1	0
1	0	1	0	1	0

Analyzing our example circuit

- A state table for our example circuit is shown below.
- The present state Q₁Q₀ and the input X will determine the next state Q₁Q₀ and the output Z.

Present	Present State		Next	State	Outputs
Q ₁	Q_0	Х	Q ₁	Q ₀	Z
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

From the diagram, you can see that

 $Z = Q_1 Q_0 X$

 This is an example of a Mealy machine, where the output depends on both the present state (Q₁Q₀) and the input (X).

Present	t State	Inputs	Next State		Outputs
Q ₁	Q_0	Х	Q ₁	Q ₀	Z
0	0	0			0
0	0	1			0
0	1	0			0
0	1	1			0
1	0	0			0
1	0	1			0
1	1	0			0
1	1	1			1

Flip-flop input equations

- Finding the next states is harder. To do this, we have to figure out how the flip-flops are changing.
 - 1. Find Boolean expressions for the flip-flop inputs.
 - 2. Use these expressions to find the actual flip-flop input values for each possible combination of present states and inputs.
 - 3. Use flip-flop characteristic tables or equations to find the next states, based on the flip-flop input values and the present states.

Step 1: Flip-flop input equations

 For our example, the flip-flop input equations are:

$$J_{1} = X' Q_{0}$$

 $K_{1} = X + Q_{0}$
 $J_{0} = X + Q_{1}$
 $K_{0} = X'$

 JK flip-flops each have two inputs, J and K. (D and T flipflops have one input each.)

Step 2: Flip-flop input values

 With these equations, we can make a table showing J₁, K₁, J₀ and K₀ for the different combinations of present state Q₁Q₀ and input X.

$$J_1 = X' Q_0$$

 $K_1 = X + Q_0$
 $J_0 = X + Q_1$
 $K_0 = X'$

Presen	t State	Inputs	Flip-flop Inputs				
Q ₁	Q ₀	Х	J ₁	K ₁	J ₀	K ₀	
0	0	0	0	0	0	1	
0	0	1	0	1	1	0	
0	1	0	1	1	0	1	
0	1	1	0	1	1	0	
1	0	0	0	0	1	1	
1	0	1	0	1	1	0	
1	1	0	1	1	1	1	
1	1	1	0	1	1	0	

Step 3: Find the next states

- Finally, use the JK flip-flop characteristic tables or equations to find the next state of *each* flip-flop, based on its present state and inputs.
- The general JK flip-flop characteristic equation was given earlier today.

$$Q(t+1) = K'Q(t) + JQ'(t)$$

 In our example circuit, we have two JK flip-flops, so we have to apply this equation to *each* of them.

 $Q_{1}(t+1) = K_{1}'Q_{1}(t) + J_{1}Q_{1}'(t)$ $Q_{0}(t+1) = K_{0}'Q_{0}(t) + J_{0}Q_{0}'(t)$

• Finally, here are the next states for Q_1 and Q_0 , using these equations.

 $Q_{1}(t+1) = K_{1}'Q_{1}(t) + J_{1}Q_{1}'(t)$ $Q_{0}(t+1) = K_{0}'Q_{0}(t) + J_{0}Q_{0}'(t)$

Presen	t State	Inputs		Flip-flop Inputs				State
Q ₁	Q_0	Х	J ₁	K ₁	J ₀	K ₀	Q ₁	Q_0
0	0	0	0	0	0	1	0	0
0	0	1	0	1	1	0	0	1
0	1	0	1	1	0	1	1	0
0	1	1	0	1	1	0	0	1
1	0	0	0	0	1	1	1	1
1	0	1	0	1	1	0	0	1
1	1	0	1	1	1	1	0	0
1	1	1	0	1	1	0	0	1

Getting the state table columns straight

- The table starts with Present State and Inputs.
 - Present State and Inputs yield FF Inputs.
 - Present State and FF Inputs yield Next State, based on the flip-flop characteristic tables.
 - Present State and Inputs yield Output.
- We really only care about FF Inputs in order to find Next State.

Presen	t State	Inputs		Flip-flo	p Inputs		Next	State	Output
Q ₁	Q_0	Х	J ₁	К ₁	J ₀	K ₀	Q ₁	Q_0	Z
0	0	0	0	0	0	1	0	0	0
0	0	1	0	1	1	0	0	1	0
0	1	0	1	1	0	1	1	0	0
0	1	1	0	1	1	0	0	1	0
1	0	0	0	0	1	1	1	1	0
1	0	1	0	1	1	0	0	1	0
1	1	0	1	1	1	1	0	0	0
1	1	1	0	1	1	0	0	1	1

State diagrams

- We can also represent the state table graphically with a state diagram.
 - The diagram has one node for each possible state.
 - Arrows in the diagram connect present states to next states, and are labelled with "input/output."
- A diagram corresponding to our example state table is shown below.

Sequential circuit analysis

Size of the state diagram

- Always check the size of your state diagrams.
 - If there are n flip-flops, there should be 2^n nodes in the diagram.
 - If there are m inputs, then each node will have 2^m outgoing arrows.
- Our example circuit has two flip-flops and one input, so the state diagram should have four nodes, each with two outgoing arrows.

Presen	t State	Inputs	Next State		Output
Q ₁	Q_0	Х	Q ₁	Q_0	Z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	0	1	0
1	1	0	0	0	0
1	1	1	0	1	1

A D flip-flop example

- Here are two D flip-flops, with values labelled A and B.
- There is one input, X.
- There are no explicit outputs.
 - In this case, the outputs are assumed to be the flip-flop values A and B themselves.
 - This is an example of a Moore machine, where the outputs depend on only the present state.

Making this in LogicWorks

- You'll need to set the direct inputs R and S. Here we've added a Reset switch; when it is 1, both flip-flops are cleared to 0.
- The flip-flops have complemented outputs already, so you won't need to generate A' and B' yourself.

Analyzing the example circuit

- The basic state table is below.
- Again, you can see that the present states are being used to generate the next states.
- For this example, remember that the present state also serves as the output.

Present State		Inputs	Next	State
Α	В	Х	А	В
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Step 1: Flip-flop input equations

There are two input equations, one for each flip-flop.

 $D_{A} = AX' + A'BX + AB'X$ $D_{B} = B \oplus X$

 "D_A" indicates a D-type flip-flop, whose output is A.

Step 2: Flip-flop input values

 Now that we have the equations for D_A and D_B, we can fill in actual values for each combination of present state and inputs.

> $D_A = AX' + A'BX + AB'X$ $D_B = B \oplus X$

Present State		Inputs	Flip-flo	o Inputs
A	В	Х	D _A	D _B
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	1	0
1	0	1	1	1
1	1	0	1	1
1	1	1	0	0

Step 3: Find the next states

- Finally, use the D flip-flop characteristic equation to find the next state of each flip-flop, based on its present state and its inputs.
- D flip-flops are simple because the next state is the same as the D input, regardless of the present state.

Q(t+1) = D

People often don't even bother writing the "Flip-flop Inputs" columns.

Presen	t State	Inputs	Flip-flo	Flip-flop Inputs		State
A	В	Х	D _A	D _B	А	В
0	0	0	0	0	0	0
0	0	1	0	1	0	1
0	1	0	0	1	0	1
0	1	1	1	0	1	0
1	0	0	1	0	1	0
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	0	0	0	0

Sequential circuit analysis

So what does this circuit do?

- When X = 0, the next state is the same as the present state.
- When X = 1, the next state is "one more" than the present state.
- This is a basic two-bit counter with an enable input, X. It's also called a modulo-4 counter, since it counts from 0 to 3 repeatedly.

Present State		Inputs	Next	State
А	В	Х	А	В
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	1	0
1	0	1	1	1
1	1	0	1	1
1	1	1	0	0

Summary

- To analyze sequential circuits, you have to understand how the flip-flops change on each clock cycle, according to their current values and inputs.
- A state table show all the possible ways that the outputs and state of a sequential circuit can change, based on the its inputs and present state.
- State diagrams are an alternative way of showing the same information.
- Next time we'll look at designing sequential circuits. This is the opposite process—you make a state table and/or diagram first, and then turn that into a sequential circuit.

