
July 2, 2003 ©2000-2003 Howard Huang 1

Arithmetic-logic units

An arithmetic-logic unit or ALU performs many different
arithmetic and logical operations. The ALU is at the
“heart” of a processor—you could say that everything
else in the computer is there to support the ALU.
Today we’ll see how you can build your own ALU.
— First we explain how several basic operations can be

implemented using just an unsigned adder.
— Then we’ll talk about logical operations and how to

build a corresponding circuit.
— Finally, we’ll put these two pieces together.

We show the same examples as the book (pp. 360-365),
but things are re-labelled to be clearer in LogicWorks.
Some inputs (CI and S0) are also treated differently.

July 2, 2003 Arithmetic-logic units 2

It’s the adder-subtractor again!

An arithmetic unit is a
circuit that supports
several different
arithmetic operations.
We’ve already seen a
simple arithmetic unit
that supports two
functions—addition and
subtraction.
That circuit has two
four-bit data inputs X
and Y, and a function
selection input Sub.
The four-bit output G is
either X + Y or X – Y,
depending on the value
of the Sub input. X – Y1

X + Y0

GSub

July 2, 2003 Arithmetic-logic units 3

Hierarchical circuit design

This circuit is based on
a four-bit unsigned
adder, which always
outputs the sum of its
inputs, S = A + B + CI.
To perform addition or
subtraction, all we did
was vary adder inputs
A, B and CI according
to the arithmetic unit
inputs X, Y and Sub.
The output G of the
arithmetic unit comes
right out of the adder.

X – Y1XY’1

X + Y0XY0

SCIBASub
Adder outputAdder inputs

July 2, 2003 Arithmetic-logic units 4

Some more possible functions

We can follow the same approach to implement other functions with our
four-bit unsigned adder as well!

S = X (transfer) S = X + 1 (increment) S = X – 1 (decrement)

(decrement)

(increment)

(transfer)

X – 10X–1

X + 11X0

X0X0

SCIBA

July 2, 2003 Arithmetic-logic units 5

The role of CI

Notice that for the transfer and increment operations, the adder has the
same A and B inputs, and only the CI input differs.
In general we can always create additional functions by setting CI = 0
instead of CI = 1, and vice versa.
Another example involves subtraction.
— We already know that two’s complement subtraction is performed by

setting A = Y’, B = X and CI = 1, so the adder outputs X + Y’ + 1.
— If we keep A = Y’ and B = X, but set CI to 0 instead, we get the output

X + Y’. This turns out to be a ones’ complement subtraction.

July 2, 2003 Arithmetic-logic units 6

Table of arithmetic functions

Here are the different arithmetic operations we’ve seen so far, and how
they can be implemented by an unsigned four-bit adder.
There are actually just four basic operations, but by setting CI to both 0
and 1 we come up with eight operations.
Notice that the transfer function can be implemented in two ways, and
appears twice in this table.

Required adder inputsArithmetic operation

1
0
1
0

1
0
1
0

CI

1111
1111
Y’
Y’

Y
Y

0000
0000

A

X
X
X
X

X
X
X
X

B

(transfer)
(decrement)
(2C subtraction)
(1C subtraction)

(add)
(increment)
(transfer)

X
X – 1
X + Y’ + 1
X + Y’

X + Y + 1
X + Y
X + 1
X

A + B + CI

July 2, 2003 Arithmetic-logic units 7

Selection codes

We can make a circuit that supports all eight of these functions, using
just a single unsigned adder.
First, we must assign a three-bit selection code S for each operation, so
we can specify which function should be computed.

Required adder inputsArithmetic operationSelection code

1
0
1
0

1
0
1
0

CI

1111
1111
Y’
Y’

Y
Y

0000
0000

A

X
X
X
X

X
X
X
X

B

(transfer)
(decrement)
(2C subtraction)
(1C subtraction)

(add)
(increment)
(transfer)

X111
X – 1011
X + Y’ + 1101
X + Y’001

X + Y + 1110
X + Y010
X + 1100
X000

A + B + CIS0S1S2

July 2, 2003 Arithmetic-logic units 8

Generating adder inputs

The circuit for our arithmetic unit just has to generate the correct inputs
to the adder (A, B and CI), based on the values of X, Y and S.
— Adder input CI should always be the same as selection code bit S0.
— The adder’s input B is always equal to X.
— Adder input A depends only on S2, S1 and Y.

Required adder inputsArithmetic operationSelection code

1
0
1
0

1
0
1
0

CI

1111
1111
Y’
Y’

Y
Y

0000
0000

A

X
X
X
X

X
X
X
X

B

(transfer)
(decrement)
(2C subtraction)
(1C subtraction)

(add)
(increment)
(transfer)

X111
X – 1011
X + Y’ + 1101
X + Y’001

X + Y + 1110
X + Y010
X + 1100
X000

A + B + CIS0S1S2

July 2, 2003 Arithmetic-logic units 9

Building the input logic

Here is a diagram of our arithmetic
unit so far.
We’ve already set the adder inputs
B to X and CI to S0, as explained
on the previous page.
All that’s left is to generate adder
input A from the arithmetic unit
input Y and the function selection
code bits S2 and S1.
From the table on the last page,
we can see that adder input A
should be set to 0000, Y, Y’ or
1111, depending on S2 and S1.

111111
Y’01
Y10

000000

AS1S2

July 2, 2003 Arithmetic-logic units 10

Primitive gate-based input logic

We’ll build this circuit using primitive gates.
If we want to use Karnaugh maps for simplification, then we should first
expand the abbreviated truth table, since the Y in the output column is
actually an input.
Remember that A and Y are each four bits long! We are really describing
four functions, A3, A2, A1 and A0, but they are each generated from Y3,
Y2, Y1 and Y0 in the same way.

1111
1011

0101
1001

1110
0010

0100
0000

AiYiS1S2

111111
Y’01
Y10

000000

AS1S2

July 2, 2003 Arithmetic-logic units 11

Primitive gate implementation

We can find a minimal sum of
products from the truth table.

Again, we have to repeat this
once for each adder input bit
A3-A0.
You can see this repetition in
the circuit diagram here.

Yi

1101S2

0100

S1

Ai = S2 Yi’ + S1 Yi

July 2, 2003 Arithmetic-logic units 12

Our complete arithmetic unit

X111
X – 1011
X + Y’ + 1101
X + Y’001
X + Y + 1110
X + Y010
X + 1100
X000

GS0S1S2

July 2, 2003 Arithmetic-logic units 13

Bitwise logical operations

Most computers also support logical operations like AND, OR and NOT, but
extended to multi-bit words instead of just single bits.
To apply a logical operation to two words X and Y, apply the operation on
each pair of bits Xi and Yi.

We’ve already seen this informally in two’s complement arithmetic, when
we talked about complementing all the bits in a number.

0101

0111AND

1101

1111

0111OR

1101

1010

0111XOR

1101

July 2, 2003 Arithmetic-logic units 14

Bitwise operations in programming

Languages like C, C++ and Java provide bitwise logical operations.

& (AND) | (OR) ^ (XOR) ~ (NOT)

These operations treat each integer as a bunch of individual bits.

13 & 25 = 9 (because 01101 & 11001 = 01001)

They are not the same as the C operators &&, || and !, which treat each
integer as a single logical value (0 is false, everything else is true).

13 && 25 = 1 (because true && true = true)

Bitwise operators are often used in programs to set a bunch of Boolean
options, or flags, with one argument. For instance, to initialize a double-
buffered, RGB-mode window with a depth buffer using OpenGL:

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGBA | GLUT_DEPTH);

July 2, 2003 Arithmetic-logic units 15

Bitwise operations in networking

IP addresses are actually 32-bit binary numbers, and bitwise operations
can be used to find network information.
For example, you can bitwise-AND an address like 192.168.10.43 with a
“subnet mask” to find the “network address,” or which network the host
is connected to.

192.168. 10. 43 = 11000000.10101000.00001010.00101011

& 255.255.255.224 = 11111111.11111111.11111111.11100000

192.168. 10. 32 = 11000000.10101000.00001010.00100000

You can use bitwise-OR to generate a “broadcast address” for sending
data to all machines on a local network.

192.168. 10. 43 = 11000000.10101000.00001010.00101011

| 0. 0. 0. 31 = 00000000.00000000.00000000.00011111

192.168. 10. 63 = 11000000.10101000.00001010.00111111

July 2, 2003 Arithmetic-logic units 16

Defining a logic unit

A logic unit implements different logical functions on two multi-bit inputs
X and Y, producing an output G.
We’ll design a simple four-bit logic unit that supports four operations.

Again, we have to assign a selection code S for each possible function.

X’11

X ⊕ Y01

X + Y10

XY00

GS0S1

July 2, 2003 Arithmetic-logic units 17

Implementing bitwise operations

Bitwise operations are applied to pairs of
corresponding bits from inputs X and Y, so
we can generate each bit of the output G
in the same way.

We can implement each output bit Gi as
shown on the right, using a multiplexer to
select the desired primitive operation.
The complete logic unit diagram is given
on the next page.

Xi’11

Xi ⊕ Yi01

Xi + Yi10

XiYi00

GiS0S1

July 2, 2003 Arithmetic-logic units 18

Our complete logic unit

X’11

X ⊕ Y01

X + Y10

XY00

GS0S1

July 2, 2003 Arithmetic-logic units 19

Combining the arithmetic and logic units

We can combine our arithmetic and logic
units into a single arithmetic-logic unit, or
ALU.
— The ALU will accept two data inputs X

and Y, and a selection code S.
— It outputs a result G, as well as a carry

out CO (only useful for the arithmetic
operations).

Since there are twelve total arithmetic and
logical functions to choose from, we need a
four-bit selection input.
We’ve added selection bit S3, which chooses
between arithmetic (S3=0) and logical (S3=1)
operations. X’11x1

X xor Y01x1
X or Y10x1
X and Y00x1

X1110
X – 10110
X + Y’ + 11010
X + Y’0010
X + Y + 11100
X + Y0100
X + 11000
X0000

GS0S1S2S3

July 2, 2003 Arithmetic-logic units 20

A complete ALU circuit

G is the ALU output.
If S3=0, the output comes
from the arithmetic unit.
If S3=1, the output comes
from the logic unit.

CO should be ignored
when logic operations
are performed (S3=1).

July 2, 2003 Arithmetic-logic units 21

Comments on the multiplexer

Both arithmetic and logic units are “active” and produce outputs.
— The multiplexer determines whether the final result G comes from the

arithmetic or logic unit.
— The output of the other one is ignored.

In programming, you’d use an if-then statement to select one operation
or the other. This is useful since programs execute serially, and we want
to avoid unnecessary work.
Our hardware scheme may seem like wasted effort, but it’s not really.
— Disabling one unit or the other wouldn’t save that much time.
— We have to build the hardware for both units anyway.
— You can think of this as a form of parallel processing, where several

operations are done together.
This is a very common use of multiplexers in logic design.

July 2, 2003 Arithmetic-logic units 22

An external view of the ALU

X’11x1
X xor Y01x1
X or Y10x1
X and Y00x1

X1110
X – 10110
X + Y’ + 11010
X + Y’0010
X + Y + 11100
X + Y0100
X + 11000
X0000

GS0S1S2S3

July 2, 2003 Arithmetic-logic units 23

Summary

In the last few lectures we looked at various arithmetic issues.
— You can build adders hierarchically, starting with half adders.
— A good representation of negative numbers simplifies subtraction.
— Unsigned adders can implement many other arithmetic functions.
— Logical operations can be applied to multi-bit values.

Where are we now?
— We started at the very bottom with primitive gates, but now we can

understand ALUs, a critical part of any processor.
— This all built upon our knowledge of Boolean algebra, Karnaugh maps,

multiplexers, circuit analysis and design, and data representations.

	Arithmetic-logic units
	It’s the adder-subtractor again!
	Hierarchical circuit design
	Some more possible functions
	The role of CI
	Table of arithmetic functions
	Selection codes
	Generating adder inputs
	Building the input logic
	Primitive gate-based input logic
	Primitive gate implementation
	Our complete arithmetic unit
	Bitwise logical operations
	Bitwise operations in programming
	Bitwise operations in networking
	Defining a logic unit
	Implementing bitwise operations
	Our complete logic unit
	Combining the arithmetic and logic units
	A complete ALU circuit
	Comments on the multiplexer
	An external view of the ALU
	Summary

		hhuang@cs.uiuc.edu
	2003-07-01T18:08:12-0500
	Urbana, Illinois
	Howard Huang
	I am the author of this document

