Addition and multiplication

- Arithmetic is the most basic thing you can do with a computer, but it's not as easy as you might expect!
- These next few lectures focus on addition, subtraction, multiplication and arithmetic-logic units or ALUs, which are the "heart" of CPUs.
- Arithmetic hardware is an excellent example of many issues that we've discussed, such as Boolean algebra, circuit analysis, data representation, and hierarchical, modular design.

Binary addition by hand

- You can add two binary numbers one column at a time starting from the right, just like you add two decimal numbers.
- But remember it's binary. For example, 1 + 1 = 10 and you have to carry!

Adding two bits

- We'll make a hardware adder based on our human addition algorithm.
- We start with a half adder, which adds two bits X and Y and produces a two-bit result: a sum S (the right bit) and a carry out C (the left bit).
- Here are truth tables, equations, circuit and block symbol.

Adding three bits

- But what we really need to do is add three bits: the augend and addend bits, and the carry in from the right.
- A full adder circuit takes three inputs X, Y and C_{in}, and produces a two-bit output consisting of a sum S and a carry out C_{out}.
- This truth table should look familiar, as it was an example in the decoder and multiplexer lectures.

Х	Y	C _{in}	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Using Boolean algebra, we can simplify S and C_{out} as shown here.

Х	Y	C _{in}	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = \Sigma m(1,2,4,7)$$

= X'Y'C_{in} + X'YC_{in}' + XY'C_{in}' + XYC_{in}
= X'(Y'C_{in} + YC_{in}') + X(Y'C_{in}' + YC_{in})
= X'(Y \oplus C_{in}) + X(Y \oplus C_{in})'
= X \oplus Y \oplus C_{in}
$$C_{out} = \Sigma m(3,5,6,7)$$

= X'YC_{in} + XY'C_{in} + XYC_{in}' + XYC_{in}
= (X'Y + XY')C_{in} + XY(C_{in}' + C_{in})
= (X \oplus Y)C_{in} + XY

 Notice that XOR operations simplify things a bit, but we had to resort to using algebra since it's hard to find XOR-based expressions with K-maps.

Full adder circuit

 We write the equations this way to highlight the hierarchical nature of adder circuits—you can build a full adder by combining two half adders!

$$S = X \oplus Y \oplus C_{in}$$

$$C_{out} = (X \oplus Y) C_{in} + XY$$

Addition and multiplication

A four-bit adder

- Similarly, we can cascade four full adders to build a four-bit adder.
 - The inputs are two four-bit numbers (A3A2A1A0 and B3B2B1B0) and a carry in CI.
 - The two outputs are a four-bit sum S3S2S1S0 and the carry out CO.
- If you designed this adder without taking advantage of the hierarchical structure, you'd end up with a 512-row truth table with five outputs!

• Let's put our initial example into this circuit, with A=1011 and B=1110.

- 1. Fill in all the inputs, including CI=0
- 2. The circuit produces C1 and S0 (1 + 0 + 0 = 01)
- 3. Use C1 to find C2 and S1 (1 + 1 + 0 = 10)
- 4. Use C2 to compute C3 and S2 (0 + 1 + 1 = 10)
- 5. Use C3 to compute CO and S3 (1 + 1 + 1 = 11)

Woohoo! The final answer is 11001.

Addition and multiplication

Overflow

- This particular example illustrates a case of overflow.
 - The answer 11001 is *five* bits long, but the inputs 1011 and 1110 were each only four bits wide.
 - Although the five-bit answer 11001 is correct, we cannot use it in any subsequent computations with this four-bit adder.
- For "unsigned" addition, overflow occurs when the carry out is 1.
- Overflows can never be prevented because computer hardware is finite.
 Even though we can make adders of arbitrary sizes, there will always be another number that won't fit.

Ariane 5

- In 1996, the European Space Agency's Ariane 5 rocket was launched for the first time... and it exploded 40 seconds after liftoff.
- It turns out the Ariane 5 used software designed for the older Ariane 4.
 - The Ariane 4 stored its horizontal velocity as a 16-bit signed integer.
 - But the Ariane 5 reaches a much higher velocity, which caused an overflow in the 16-bit quantity.
- The overflow error was never caught, so incorrect instructions were sent to the rocket boosters and main engine.

Hierarchical adder design

- When you add two 4-bit numbers the carry in is always 0, so why does the four-bit adder have a CI input?
- We can use CI to combine four-bit adders together to make even larger adders, just like we combined half adders and full adders earlier.
- Here is one way to build an eight-bit adder, for example.

• CI is also useful for subtraction, as we'll see next time.

Ripple carry delays

- The diagram below shows our four-bit adder completely drawn out.
- This is called a ripple carry adder, because the inputs A0, B0 and CI "ripple" leftwards until CO and S3 are produced.
- Ripple carry adders are slow!
 - There is a very long path from A0, B0 and CI to CO and S3.
 - For an *n*-bit ripple carry adder, the longest path has 2n+1 gates.
 - The longest path in a 64-bit adder would include 129 gates!

A faster way to compute carry outs

- Instead of waiting for the carry out from each previous stage, we can minimize the delay by computing it directly with a two-level circuit.
- First we'll define two functions.
 - The "generate" function G_i produces 1 when there *must* be a carry out from position i (i.e., when A_i and B_i are both 1).

$G_i = A_i B_i$

- The "propagate" function P_i is true when an incoming carry is propagated (i.e, when $A_i=1$ or $B_i=1$, but not both).

$\mathsf{P}_i \texttt{=} \mathsf{A}_i \oplus \mathsf{B}_i$

• Then we can rewrite the carry out function.

$$\mathsf{C}_{i+1} = \mathsf{G}_i + \mathsf{P}_i \mathsf{C}_i$$

A _i	B _i	C _i	C _{i+1}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Algebraic carry out hocus-pocus

Let's look at the carry out equations for specific bits, using the general equation from the previous page C_{i+1} = G_i + P_iC_i.

• These expressions are all sums of products, so we can use them to make a circuit with only a two-level delay.

A faster four-bit adder

Addition and multiplication

Carry lookahead adders

- This is called a carry lookahead adder.
 - By adding more hardware, we reduced the number of levels in the circuit and sped things up.
 - We can combine carry lookahead adders just like ripple carry adders, and we can do carry lookahead *between* the adders too.
- How much faster is this?
 - For a four-bit adder, not much. There are 4 gates in the longest path of a carry lookahead adder, versus 9 gates for a ripple carry adder.
 - If we do the cascading properly, a 16-bit carry lookahead adder will have only 8 gates in the longest path, as opposed to 33 with a ripple carry adder.
 - The newest processors use 64-bit adders. That's 12 vs. 129 gates!
- The delay of a carry lookahead adder grows *logarithmically* with the size of the adder, while a ripple carry adder's delay grows *linearly*.

Binary multiplication by hand

- Multiplication can't be that hard! It's just repeated addition, so if we have adders, we should be able to do multiplication also.
- Here's an example of binary multiplication to get the mojo flowing.

Binary multiplication

- Since we always multiply by either 0 or 1, the partial products are always either 0000 or the multiplicand (1101 in this example).
- There are four partial products which are added to form the result.
 - We can add them in pairs, using three adders.
 - The product can have up to 8 bits, but we can use four-bit adders if we stagger them leftwards, like the partial products themselves.

2×2 binary multiplication

 Here is an outline of multiplying the two-bit numbers A1A0 and B1B0, to produce the four-bit product P3-P0.

	P3	P2	P1	P0
+		A1B1	A1B0	
			A0B1	A0B0
		×	A1	A0
			B1	BO

- The bits of each partial product are computed by multiplying two bits of the input.
- Since two-bit multiplication is the same as the logical AND operation, we can use AND gates to generate the partial products.

Α	В	A×B	A•B
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	1

A 2×2 binary multiplier

- Here is a circuit that multiplies the two-bit numbers A1A0 and B1B0, resulting in the four-bit product P3-P0.
- For a 2×2 multiplier we can just use two half adders to sum the partial products. In general, though, we'll need full adders.
- The diagram on the next page shows how this can be extended to a four-bit multiplier, taking inputs A3-A0 and B3-B0 and outputting the product P7-P0.

A 4×4 binary multiplier

Complexity of multiplication circuits

- In general, when multiplying an *m*-bit number by an *n*-bit number:
 - There will be *n* partial products, one for each bit of the multiplier.
 - This requires *n*-1 adders, each of which can add *m* bits.
- The circuit for 32-bit or 64-bit multiplication would be huge!

Shifty arithmetic operations

 In decimal, an easy way to multiply by 10 is to shift all the digits to the left, and tack a 0 to the right end.

128 × 10 = **128**0

• We can do a similar thing in binary. Shifting left once multiplies by two.

 $11 \times 10 = 110$ (in decimal, $3 \times 2 = 6$)

• Shifting left twice is equivalent to multiplying by four.

 $11 \times 100 = 1100$ (in decimal, $3 \times 4 = 12$)

Similarly, shifting once to the *right* is equivalent to *dividing* by two.

1100 / 10 = 100 (in decimal, 12 / 2 = 6)

Addition and multiplication summary

- Adder and multiplier circuits reflect human algorithms for addition and multiplication.
- Adders and multipliers are built hierarchically.
 - We start with half adders and full adders and work our way up.
 - Building these circuits from scratch using truth tables and K-maps would be pretty difficult.
- Adder circuits are limited in the number of bits that can be handled. An overflow occurs when a result exceeds this limit.
- There is a tradeoff between simple but slow ripple carry adders and more complex but faster carry lookahead adders.
- Multiplying and dividing by powers of two can be done with simple shifts.