
June 30, 2003 ©2000-2003 Howard Huang 1

Addition and multiplication

Arithmetic is the most basic thing you can do with a computer, but it’s
not as easy as you might expect!
These next few lectures focus on addition, subtraction, multiplication
and arithmetic-logic units or ALUs, which are the “heart” of CPUs.
Arithmetic hardware is an excellent example of many issues that we’ve
discussed, such as Boolean algebra, circuit analysis, data representation,
and hierarchical, modular design.

June 30, 2003 Addition and multiplication 2

Binary addition by hand

You can add two binary numbers one column at a time starting from the
right, just like you add two decimal numbers.
But remember it’s binary. For example, 1 + 1 = 10 and you have to carry!

The initial carry
in is implicitly 0

Sum10011

Addend0111+

Augend1101

Carry in0111

most significant bit
(MSB)

least significant bit
(LSB)

June 30, 2003 Addition and multiplication 3

Adding two bits

We’ll make a hardware adder based on our human addition algorithm.
We start with a half adder, which adds two bits X and Y and produces a
two-bit result: a sum S (the right bit) and a carry out C (the left bit).
Here are truth tables, equations, circuit and block symbol.

0111
1001
1010
0000

SCYX
C = XY

S = X’Y + XY’
= X ⊕ Y

Be careful! Now we use + for
both arithmetic addition and
the logical OR operation.

June 30, 2003 Addition and multiplication 4

Adding three bits

10011

0111+

1101

0111But what we really need to do is add
three bits: the augend and addend
bits, and the carry in from the right.
A full adder circuit takes three
inputs X, Y and Cin, and produces a
two-bit output consisting of a sum S
and a carry out Cout.
This truth table should look familiar,
as it was an example in the decoder
and multiplexer lectures.

11111
01011
01101
10001
01110
10010
10100
00000

SCoutCinYX

June 30, 2003 Addition and multiplication 5

Full adder equations

Using Boolean algebra, we can simplify S and Cout as shown here.

Notice that XOR operations simplify things a bit, but we had to resort to
using algebra since it’s hard to find XOR-based expressions with K-maps.

S = Σm(1,2,4,7)
= X’Y’Cin + X’YCin’ + XY’Cin’ + XYCin

= X’(Y’Cin + YCin’) + X(Y’Cin’ + YCin)
= X’(Y ⊕ Cin) + X(Y ⊕ Cin)’
= X ⊕ Y ⊕ Cin

Cout = Σm(3,5,6,7)
= X’YCin + XY’Cin + XYCin’ + XYCin

= (X’Y + XY’)Cin + XY(Cin’ + Cin)
= (X ⊕ Y)Cin + XY

11111
01011
01101
10001
01110
10010
10100
00000

SCoutCinYX

June 30, 2003 Addition and multiplication 6

Full adder circuit

We write the equations this way to highlight the hierarchical nature of
adder circuits—you can build a full adder by combining two half adders!

S = X ⊕ Y ⊕ Cin
Cout = (X ⊕ Y) Cin + XY

June 30, 2003 Addition and multiplication 7

A four-bit adder

Similarly, we can cascade four full adders to build a
four-bit adder.
— The inputs are two four-bit numbers (A3A2A1A0 and

B3B2B1B0) and a carry in CI.
— The two outputs are a four-bit sum S3S2S1S0 and the

carry out CO.
If you designed this adder without taking advantage of
the hierarchical structure, you’d end up with a 512-row
truth table with five outputs!

June 30, 2003 Addition and multiplication 8

An example of 4-bit addition

Let’s put our initial example into this circuit, with A=1011 and B=1110.

1 1 1 0 1 1 0 1

0

1. Fill in all the inputs, including CI=0

1 1

5. Use C3 to compute CO and S3 (1 + 1 + 1 = 11)

0

2. The circuit produces C1 and S0 (1 + 0 + 0 = 01)

1

1

3. Use C1 to find C2 and S1 (1 + 1 + 0 = 10)

0

1

4. Use C2 to compute C3 and S2 (0 + 1 + 1 = 10)

0

Woohoo! The final answer is 11001.

June 30, 2003 Addition and multiplication 9

Overflow

This particular example illustrates a case of overflow.
— The answer 11001 is five bits long, but the inputs 1011 and 1110 were

each only four bits wide.
— Although the five-bit answer 11001 is correct, we cannot use it in any

subsequent computations with this four-bit adder.
For “unsigned” addition, overflow occurs when the carry out is 1.
Overflows can never be prevented because computer hardware is finite.
Even though we can make adders of arbitrary sizes, there will always be
another number that won’t fit.

June 30, 2003 Addition and multiplication 10

Ariane 5

In 1996, the European Space Agency’s Ariane 5 rocket was launched for
the first time... and it exploded 40 seconds after liftoff.
It turns out the Ariane 5 used software designed for the older Ariane 4.
— The Ariane 4 stored its horizontal velocity as a 16-bit signed integer.
— But the Ariane 5 reaches a much higher velocity, which caused an

overflow in the 16-bit quantity.
The overflow error was never caught, so incorrect instructions were sent
to the rocket boosters and main engine.

June 30, 2003 Addition and multiplication 11

Hierarchical adder design

When you add two 4-bit numbers the carry in is always 0, so why does the
four-bit adder have a CI input?
We can use CI to combine four-bit adders together to make even larger
adders, just like we combined half adders and full adders earlier.
Here is one way to build an eight-bit adder, for example.

CI is also useful for subtraction, as we’ll see next time.

June 30, 2003 Addition and multiplication 12

Ripple carry delays

The diagram below shows our four-bit adder completely drawn out.
This is called a ripple carry adder, because the inputs A0, B0 and CI
“ripple” leftwards until CO and S3 are produced.
Ripple carry adders are slow!
— There is a very long path from A0, B0 and CI to CO and S3.
— For an n-bit ripple carry adder, the longest path has 2n+1 gates.
— The longest path in a 64-bit adder would include 129 gates!

1

23456789

June 30, 2003 Addition and multiplication 13

A faster way to compute carry outs

Instead of waiting for the carry out from each
previous stage, we can minimize the delay by
computing it directly with a two-level circuit.
First we’ll define two functions.
— The “generate” function Gi produces 1

when there must be a carry out from
position i (i.e., when Ai and Bi are both 1).

Gi = AiBi

— The “propagate” function Pi is true when
an incoming carry is propagated (i.e, when
Ai=1 or Bi=1, but not both).

Pi = Ai ⊕ Bi

Then we can rewrite the carry out function.

Ci+1 = Gi + PiCi

Gi Pi

1111
1011
1101
0001
1110
0010
0100
0000

Ci+1CiBiAi

June 30, 2003 Addition and multiplication 14

Algebraic carry out hocus-pocus

Let’s look at the carry out equations for specific bits, using the general
equation from the previous page Ci+1 = Gi + PiCi.

C1 = G0 + P0C0

C2 = G1 + P1C1
= G1 + P1(G0 + P0C0)
= G1 + P1G0 + P1P0C0

C3 = G2 + P2C2
= G2 + P2(G1 + P1G0 + P1P0C0)
= G2 + P2G1 + P2P1G0 + P2P1P0C0

C4 = G3 + P3C3
= G3 + P3(G2 + P2G1 + P2P1G0 + P2P1P0C0)
= G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0C0

These expressions are all sums of products, so we can use them to make a
circuit with only a two-level delay.

Ready to see the circuit?

June 30, 2003 Addition and multiplication 15

A faster four-bit adder

June 30, 2003 Addition and multiplication 16

Carry lookahead adders

This is called a carry lookahead adder.
— By adding more hardware, we reduced the number of levels in the

circuit and sped things up.
— We can combine carry lookahead adders just like ripple carry adders,

and we can do carry lookahead between the adders too.
How much faster is this?
— For a four-bit adder, not much. There are 4 gates in the longest path

of a carry lookahead adder, versus 9 gates for a ripple carry adder.
— If we do the cascading properly, a 16-bit carry lookahead adder will

have only 8 gates in the longest path, as opposed to 33 with a ripple
carry adder.

— The newest processors use 64-bit adders. That’s 12 vs. 129 gates!
The delay of a carry lookahead adder grows logarithmically with the size
of the adder, while a ripple carry adder’s delay grows linearly.

June 30, 2003 Addition and multiplication 17

Binary multiplication by hand

Multiplication can’t be that hard! It’s just repeated addition, so if we
have adders, we should be able to do multiplication also.
Here’s an example of binary multiplication to get the mojo flowing.

0111001

0000+

1011

1011

0000

0110×

1011

June 30, 2003 Addition and multiplication 18

Binary multiplication

Product0111001

0000+

1011
Partial products

1011

0000

Multiplier0110×

Multiplicand1011

Since we always multiply by either 0 or 1, the partial products are always
either 0000 or the multiplicand (1101 in this example).
There are four partial products which are added to form the result.
— We can add them in pairs, using three adders.
— The product can have up to 8 bits, but we can use four-bit adders if

we stagger them leftwards, like the partial products themselves.

June 30, 2003 Addition and multiplication 19

2×2 binary multiplication

Here is an outline of multiplying the two-bit numbers A1A0 and B1B0, to
produce the four-bit product P3-P0.

P0P1P2P3

A1B0A1B1+

A0B0A0B1

A0A1×

B0B1

The bits of each partial product are computed
by multiplying two bits of the input.
Since two-bit multiplication is the same as the
logical AND operation, we can use AND gates to
generate the partial products. 1

0
0
0

A•B

111
001
010
000

A×BBA

June 30, 2003 Addition and multiplication 20

A 2×2 binary multiplier

Here is a circuit that multiplies
the two-bit numbers A1A0 and
B1B0, resulting in the four-bit
product P3-P0.
For a 2×2 multiplier we can just
use two half adders to sum the
partial products. In general,
though, we’ll need full adders.
The diagram on the next page
shows how this can be extended
to a four-bit multiplier, taking
inputs A3-A0 and B3-B0 and
outputting the product P7-P0.

June 30, 2003 Addition and multiplication 21

A 4×4 binary multiplier

June 30, 2003 Addition and multiplication 22

Complexity of multiplication circuits

In general, when multiplying an m-bit number by an n-bit number:
— There will be n partial products, one for each bit of the multiplier.
— This requires n-1 adders, each of which can add m bits.

The circuit for 32-bit or 64-bit multiplication would be huge!

June 30, 2003 Addition and multiplication 23

Shifty arithmetic operations

In decimal, an easy way to multiply by 10 is to shift all the digits to the
left, and tack a 0 to the right end.

128 × 10 = 1280

We can do a similar thing in binary. Shifting left once multiplies by two.

11 × 10 = 110 (in decimal, 3 × 2 = 6)

Shifting left twice is equivalent to multiplying by four.

11 × 100 = 1100 (in decimal, 3 × 4 = 12)

Similarly, shifting once to the right is equivalent to dividing by two.

1100 ⁄ 10 = 100 (in decimal, 12 ⁄ 2 = 6)

June 30, 2003 Addition and multiplication 24

Addition and multiplication summary

Adder and multiplier circuits reflect human algorithms for addition and
multiplication.
Adders and multipliers are built hierarchically.
— We start with half adders and full adders and work our way up.
— Building these circuits from scratch using truth tables and K-maps

would be pretty difficult.
Adder circuits are limited in the number of bits that can be handled. An
overflow occurs when a result exceeds this limit.
There is a tradeoff between simple but slow ripple carry adders and more
complex but faster carry lookahead adders.
Multiplying and dividing by powers of two can be done with simple shifts.

	Addition and multiplication
	Binary addition by hand
	Adding two bits
	Adding three bits
	Full adder equations
	Full adder circuit
	A four-bit adder
	An example of 4-bit addition
	Overflow
	Ariane 5
	Hierarchical adder design
	Ripple carry delays
	A faster way to compute carry outs
	Algebraic carry out hocus-pocus
	A faster four-bit adder
	Carry lookahead adders
	Binary multiplication by hand
	Binary multiplication
	2×2 binary multiplication
	A 2×2 binary multiplier
	A 4×4 binary multiplier
	Complexity of multiplication circuits
	Shifty arithmetic operations
	Addition and multiplication summary

		hhuang@cs.uiuc.edu
	2003-06-25T12:02:58-0500
	Urbana, Illinois
	Howard Huang
	I am the author of this document

