
June 25, 2003 Other combinational circuit topics 1

Other combinational circuit topics

Today we’ll mention several miscellaneous but important circuit topics.
— There are a few additional gates that are often used in logic design 

aside from the AND, OR and NOT gates that we’ve already seen.
— Up to now we haven’t talked about how much time it takes for gates 

to operate.
— It’s possible to design hardware using special programming languages.



June 25, 2003 Other combinational circuit topics 2

NAND 

The NAND of two inputs x and y is 
the complement of their product.

(xy)’

We know from DeMorgan’s Law that 
this can also be written as:

x’ + y’

There are two equivalent logic gate 
symbols for NAND, corresponding to 
the two equivalent expressions.
The NAND gate is universal, since 
every function can be implemented 
using only NAND gates!

NAND
(NOT-AND)

Operation:

Expressions: (xy)’ = x’ + y’

Truth table:

011
101
110
100

(xy)’yx

Logic gates:



June 25, 2003 Other combinational circuit topics 3

NAND gates are universal

Here is how you can use NAND to implement the other basic logic gates.

If you know how to convert the primitive gates to NAND gates, then you 
can convert any circuit to one that includes only NANDs. 

(xx)’ = x’ ((xy)’ (xy)’)’ = xy ((xx)’ (yy)’)’ = (x’ y’)’
= x + y

NOT AND OR



June 25, 2003 Other combinational circuit topics 4

But NAND gates are weird…

I won’t date you if 
you’re not clean or not 

wealthy and also 
you’re not smart or not 

friendly.

Get me off 
this island!



June 25, 2003 Other combinational circuit topics 5

Making NAND circuits I

The easiest way for humans to make a NAND-only circuit is to start with a 
regular diagram designed with primitive gates.

First convert all AND and OR gates to NAND gates. This is easy if you use 
the AND-NOT and NOT-OR symbols respectively.



June 25, 2003 Other combinational circuit topics 6

Making NAND circuits II

Then make sure you added inverters to lines in pairs, as shown in green.

We must add inverters or complement the input variables for the red 
lines, to ensure that the original function is not modified ((x’)’ = x).



June 25, 2003 Other combinational circuit topics 7

NOR

The NOR of two inputs x and y is the 
complement of their sum.

(x + y)’

This is equivalent to:

x’y’

There are two equivalent logic gate 
symbols for NOR, based on the two 
equivalent expressions.
NOR gates are also universal.
— All of the primitive operations 

can be defined in terms of NOR.
— Any Boolean function can be 

implemented with a NOR-only 
diagram.

NOR
(NOT-OR)

Operation:

Expressions: (x + y)’ = x’y’

Truth table:

011
001
010
100

(x + y)’yx

Logic gates:



June 25, 2003 Other combinational circuit topics 8

XOR

The XOR of two inputs x and y is 
true when exactly one of the inputs 
is true—in other words, xy=01 or 
xy=10.

x ⊕ y = x’y + xy’

Another way to think about this is 
that x ⊕ y is true when x and y are 
different.
This corresponds more closely to 
the normal English usage of “or,” 
as in “eat your meat or you won’t 
get any pudding.”

XOR
(eXclusive OR)

Operation:

x ⊕ yExpression:

Truth table:

011
101
110
000

x ⊕ yyx

Logic gate:



June 25, 2003 Other combinational circuit topics 9

Interesting XOR properties

There are several fascinating properties of XOR that you can prove using 
Boolean algebra, starting from the definition x ⊕ y = x’y + xy’

We will meet the first two laws in this table again next week.
— The exclusive or of any value and zero is that value.
— The XOR of any value and one is the complement of that value.

Commutative
Associative

x ⊕ y = y ⊕ x
x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z

x ⊕ x’ = 1x ⊕ x = 0
x ⊕ 1 = x’x ⊕ 0 = x



June 25, 2003 Other combinational circuit topics 10

More XOR tidbits

x ⊕ (y ⊕ z) = 
x’y’z + x’yz’ + xyz + xy’z’

XOR can be extended to an arbitrary 
number of arguments.
In general, the XOR function is true when 
an odd number of its inputs are true.
— For instance, you can simplify an XOR 

of three inputs to the expression and 
truth table on the right.

— The output is true only when either 1 
or 3 of the inputs are true.

XOR is especially useful in building adders 
as we’ll see soon, and error detection and 
correction circuits.

1111
0011
0101
1001
0110
1010
1100
0000

x ⊕ y ⊕ zzyx



June 25, 2003 Other combinational circuit topics 11

XNOR

Finally, the XNOR of two inputs x 
and y is true when x and y are 
the same—in other words, when 
xy=00 or xy=11.

(x ⊕ y)’ = x’y’ + xy

Notice that the XNOR function is 
the complement of the XOR.

XNOR
(eXclusive NOR)

Operation:

(x ⊕ y)’Expression:

111
001
010
100

(x ⊕ y)’yxTruth table:

Logic gate:



June 25, 2003 Other combinational circuit topics 12

Delays and timing diagrams

Although we haven’t said anything up to now, gates take time!
The time it takes for a gate’s outputs to change in response to an input 
change is the propagation delay. The time is mainly required to apply or 
drain voltages in the lower-level transistors.
Timing diagrams are used to show delays. 

This example, for an inverter, shows how signal values, on the vertical 
axis, change with time on the horizontal axis.
— When the input becomes 1, the output becomes 0, and vice versa
— There is a slight delay before the outputs changes 

x

x’

1

0

positive 
edge

negative
edge



June 25, 2003 Other combinational circuit topics 13

Hazards

In the circuit below, the output f should remain 1 if the inputs change 
from xyz = 111 to xyz = 110.
But what really happens? There is a glitch, and f becomes 0 temporarily!
— z’ and yz change right after z changes.
— But xz’ has not changed yet, so f then (incorrectly) changes to 0.
— Only after xz’ changes does f go back to 1.

x

y

z

z’

yz

xz’

f



June 25, 2003 Other combinational circuit topics 14

Hazards are a difficult problem

Part of the problem here is that there are multiple paths from the inputs 
(z) to the outputs, and some paths are longer than others.
Hazards can be very difficult to detect and prevent in general.

Path 1 goes through 3 gates

Path 2 goes through 2 gates



June 25, 2003 Other combinational circuit topics 15

Hardware description languages

It’s possible to describe hardware textually instead of graphically, using a 
hardware description language that’s a little like C or Java.
These languages provide functionality like that of LogicWorks.
— Built-in parts libraries provide basic gates and devices.
— You can create your own parts and build circuits hierarchically.
— Devices are connected together to make a complete circuit.
— A simulator allows you to test the resulting design.

We’ll present a brief introduction to VHDL (Very High-speed Integrated 
Circuit Hardware Description Language), with small examples to give you 
the flavor of the language.



June 25, 2003 Other combinational circuit topics 16

Entities

An entity in VHDL describes the inputs and outputs of a device. It’s like
the block symbols we often use, or a function header in C or Java.
For instance, a 2-to-4 decoder has three inputs and four outputs, each of 
which is a single bit with a VHDL type std_logic.

ENTITY Decoder4 IS
PORT (en, s1, s0: IN std_logic;

q3, q2, q1, q0: OUT std_logic);
END Decoder4;



June 25, 2003 Other combinational circuit topics 17

A basic decoder implementation

An architecture describes the implementation of a device, similar to how 
a function body in C or Java implements some task.
Here is a simple 2-to-4 decoder implementation in VHDL.

Remember that these signals were already declared before, in an entity.

ARCHITECTURE Dataflow OF Decoder4 IS
BEGIN

q3 <= en AND s1 AND s0;
q2 <= en AND s1 AND (NOT s0);
q1 <= en AND (NOT s1) AND s0;
q0 <= en AND (NOT s1) AND (NOT s0);

END Dataflow;



June 25, 2003 Other combinational circuit topics 18

Vector types

You can also group bits into vectors or arrays.
— The 2-to-4 decoder entity below has a one-bit input EN and a two-bit 

input S, which consists of bits S(1) and S(0). 
— There is a “single” output Q, which consists of bits Q(0) to Q(3).

ENTITY Decoder4b IS
PORT (s: IN std_logic_vector(1 DOWNTO 0);

q: OUT std_logic_vector(3 DOWNTO 0));
END Decoder4b;



June 25, 2003 Other combinational circuit topics 19

An alternative decoder implementation

A behavioral specification expresses what, rather than how.
The alternative decoder implementation below uses a case-like statement 
to describe the four-bit output Q in terms of the two-bit input S.
This can be automatically translated into a circuit—and we didn’t write a 
single Boolean expression!

ARCHITECTURE Behavioral OF Decoder4b IS
BEGIN

q <= "0001" WHEN s = "00" ELSE
"0010" WHEN s = "01" ELSE
"0100" WHEN s = "10" ELSE
"1000";

END Behavioral;



June 25, 2003 Other combinational circuit topics 20

Top-down design

VHDL systems can translate behavioral 
descriptions into circuits.
— This makes it pretty easy to build a 

complex device.
— The disadvantage is that a compiler-

generated circuit may not be as 
efficient as one you design by hand.

A lot of VHDL designers use a top-down
methodology.
— Behavioral specifications are written 

first, to get everything up and running.
— Then individual entities can be slowly 

refined with more efficient, lower-level 
descriptions.



June 25, 2003 Other combinational circuit topics 21

A 3-to-8 decoder

Let’s combine two 2-to-4 decoders to make a 3-to-8 decoder in VHDL. 

First, a VHDL entity declaration is shown below.

ENTITY Decoder8 IS
PORT (s2, s1, s0: IN std_logic;

q7, q6, q5, q4, q3, q2, q1, q0: OUT std_logic);
END Decoder8;



June 25, 2003 Other combinational circuit topics 22

Composing devices in VHDL

Here is the VHDL architecture for the 3-to-8 decoder.
— We reuse our 2-to-4 decoder by declaring it as a component.
— A port map specifies the inputs and outputs for a component. It’s like 

a function call in C or Java.
— An internal signal E2 represents the negation of input S2.

The outputs Q0-Q7 are taken directly from the 2-to-4 decoders.

ARCHITECTURE Dataflow OF Decoder8 IS
COMPONENT Decoder4

PORT (en, s1, s0: IN std_logic;
q3, q2, q1, q0: OUT std_logic);

END COMPONENT;
SIGNAL e2: std_logic;

BEGIN
e2 <= NOT s2;
block1: Decoder4 PORT MAP (s2, s1, s0, q7, q6, q5, q4);
block0: Decoder4 PORT MAP (e2, s1, s0, q3, q2, q1, q0);

END Dataflow;



June 25, 2003 Other combinational circuit topics 23

Modularity

Modularity is an important design principle in building any large system, 
whether it’s a program or a circuit.
A VHDL entity describes a circuit’s inputs and outputs, while there are 
many ways to specify the implementation.
— A behavioral description expresses what the circuit does at a higher 

level, without giving implementation details.
— A dataflow description supplies an actual low-level design, perhaps 

using Boolean expressions or other subdevices.
High-level languages provide similar features.
— Headers and interfaces specify the inputs and outputs of a function or 

method, but not how it works.
— Implementations with actual code are usually stored in separate files, 

and there can be many implementations of one function.
These features help make VHDL much better than LogicWorks for large-
scale circuit design involving many people.



June 25, 2003 Other combinational circuit topics 24

Summary

There are several useful additional logic gates.
— NAND and NOR are universal gates which can replace all others.
— XOR implements the “odd” function, and XNOR is its complement.

Gates and circuits all have propagation delays.
— Delays can be shown explicitly on timing diagrams.
— Sometimes delays can lead to undesirable hazards.

Hardware description languages like VHDL are another way to specify and 
design circuits, applying programming language ideas to hardware.
Next week we’ll talk about arithmetic circuits for addition, subtraction, 
and multiplication.


	Other combinational circuit topics
	NAND
	NAND gates are universal
	But NAND gates are weird…
	Making NAND circuits I
	Making NAND circuits II
	NOR
	XOR
	Interesting XOR properties
	More XOR tidbits
	XNOR
	Delays and timing diagrams
	Hazards
	Hazards are a difficult problem
	Hardware description languages
	Entities
	A basic decoder implementation
	Vector types
	An alternative decoder implementation
	Top-down design
	A 3-to-8 decoder
	Composing devices in VHDL
	Modularity
	Summary

		hhuang@cs.uiuc.edu
	2003-06-25T04:36:21-0500
	Urbana, Illinois
	Howard Huang
	I am the author of this document




