
June 24, 2003 ©2000-2003 Howard Huang 1

Decoder-based circuits

Today we’ll study decoders, another commonly-used circuit.
This lecture will follow the outline of yesterday’s multiplexer lecture.
— There are different ways to design and build decoders.
— Decoders can be used to implement arbitrary functions.
— As always, we depend upon Boolean algebra to analyze circuits.

We’ll also talk ROMs and PLAs, programmable circuits based on decoders.



June 24, 2003 Decoder-based circuits 2

Multiplexer review

A 2n-to-1 multiplexer routes one of 2n input lines to a single output line.
A block diagram, truth table and Boolean expression for a 4-to-1 mux
with an active-low enable input are given below.

Notice that the n select inputs allow us to choose one of 2n data inputs.

1xx1

D3110
D2010
D1100
D0000

QS0S1EN’

Q = S1’S0’D0 + S1’S0 D1 + S1 S0’D2 + S1 S0 D3



June 24, 2003 Decoder-based circuits 3

What a decoder does

A n-to-2n decoder uses its n-bit input to determine which of 2n outputs 
will be uniquely activated.

Here is a block diagram and truth table for a 2-to-4 decoder.
— The two-bit input is called S1S0, and the four outputs are Q0-Q3.
— If the input is the binary number i, then output Qi alone will be true.

This circuit “decodes” a binary number into a “one-of-four” code.

100011
010001
001010
000100

Q3Q2Q1Q0S0S1



June 24, 2003 Decoder-based circuits 4

Building a decoder

We can use the truth table to derive minimal sum of products equations 
for each of the four outputs (Q0-Q3), based on the two inputs (S0-S1).

In this case there’s not much to be simplified. Here are the equations:

Q0 = S1’S0’
Q1 = S1’S0
Q2 = S1 S0’
Q3 = S1 S0

100011
010001
001010
000100

Q3Q2Q1Q0S0S1



June 24, 2003 Decoder-based circuits 5

Decoder circuit diagram

Here is an implementation of a 2-to-4 decoder.

100011
010001
001010
000100

Q3Q2Q1Q0S0S1



June 24, 2003 Decoder-based circuits 6

Multiplexers and decoders

Here is the implementation of the 4-to-1 multiplexer from last time.

This mux includes a 2-to-4 decoder internally! Multiplexers are really just 
a (very useful) application of decoders.



June 24, 2003 Decoder-based circuits 7

Enable inputs

Just as with multiplexers, decoders can include enable inputs.
— EN=0 disables the decoder, which by convention means that all of the

decoder’s outputs are 0.
— EN=1 enables the decoder so that it behaves as specified earlier, with 

exactly one of the outputs being 1.

0000xx0

1
1
1
1

EN

100011
010001
001010
000100

Q3Q2Q1Q0S0S1



June 24, 2003 Decoder-based circuits 8

A 3-to-8 decoder

Larger decoders are similar. Here is a 3-to-8 decoder.
— There are three selection inputs S2S1S0, which 

activate one of eight outputs, Q0-Q7.
— Again, only one output will be true for any input 

combination.
A truth table and output equations for a 3-to-8 decoder 
(without EN) are given below.

10000000111
01000000011
00100000101
00010000001
00001000110
00000100010
00000010100
00000001000

Q7Q6Q5Q4Q3Q2Q1Q0S0S1S2

Q0 = S2’S1’S0’
Q1 = S2’S1’S0
Q2 = S2’S1 S0’
Q3 = S2’S1 S0
Q4 = S2 S1’S0’
Q5 = S2 S1’S0
Q6 = S2 S1 S0’
Q7 = S2 S1 S0



June 24, 2003 Decoder-based circuits 9

Building a 3-to-8 decoder

You could build a 3-to-8 decoder from the truth table and MSP equations 
below, just like we built the 2-to-4 decoder earlier.
Another way to design a decoder is to break it into smaller pieces. 
Notice some patterns in the table below:
— When S2 = 0, outputs Q0-Q3 are generated as in a 2-to-4 decoder.
— When S2 = 1, outputs Q4-Q7 are generated as in a 2-to-4 decoder.

10000000111
01000000011
00100000101
00010000001
00001000110
00000100010
00000010100
00000001000

Q7Q6Q5Q4Q3Q2Q1Q0S0S1S2



June 24, 2003 Decoder-based circuits 10

Decoder expansion

Here’s a 3-to-8 decoder built from two 
smaller 2-to-4 decoders.
When S2=0, the bottom 2-to-4 decoder 
is enabled and generates a 1 for one of 
outputs Q0, Q1, Q2 or Q3.
When S2=1, the top 2-to-4 decoder is 
enabled instead, and a 1 will be output 
for either Q4, Q5, Q6 or Q7.

10000000111
01000000011
00100000101
00010000001
00001000110
00000100010
00000010100
00000001000

Q7Q6Q5Q4Q3Q2Q1Q0S0S1S2



June 24, 2003 Decoder-based circuits 11

Modularity

You could verify that this circuit is a 3-to-8 decoder, by using equations 
for the 2-to-4 decoders to derive equations for the 3-to-8.
Be careful not to confuse the “inner” inputs and outputs of the 2-to-4 
decoders with the “outer” inputs and outputs of the 3-to-8 decoder.
This is similar to having several functions in a program which all use a 
formal parameter “x”.



June 24, 2003 Decoder-based circuits 12

So what good is a decoder?

Do the truth table and equations look familiar?

Decoders are sometimes called minterm generators.
— For each input combination, exactly one output is true.
— Each output equation contains all of the input variables.

This means that you can easily use a decoder, or a minterm generator, to 
implement any sum of minterms expression.

100011
010001
001010
000100

Q3Q2Q1Q0S0S1
Q0 = S1’S0’
Q1 = S1’S0
Q2 = S1 S0’
Q3 = S1 S0



June 24, 2003 Decoder-based circuits 13

Example: addition

Yesterday we presented a simple circuit which added three 1-bit inputs 
X, Y and Z to produce a two-bit output, C (“carry”) and S (“sum”).
A truth table and sum of minterm equations for C and S are shown below.

Today we’ll implement these two functions using 3-to-8 decoders.

1
1
1
0
1
0
0
0

C

1111
0011
0101
1001
0110
1010
1100
0000

SZYX

C(X,Y,Z) = Σm(3,5,6,7)
S(X,Y,Z) = Σm(1,2,4,7)



June 24, 2003 Decoder-based circuits 14

Implementing functions with decoders

Here, a 3-to-8 decoder implements C as a sum of minterms.

If XYZ is 011, 101, 110 or 111, then one of the decoder outputs Q3, Q5, 
Q6 or Q7 will be true, and the output C(X,Y,Z) will also be true.
The “+5V” symbol (“5 volts”) represents a 1 or true in LogicWorks. 



June 24, 2003 Decoder-based circuits 15

Verifying our adder

C is the sum of decoder outputs Q3, Q5, Q6 and Q7.

C = Q3 + Q5 + Q6 + Q7

We know how the decoder’s outputs are generated from its inputs.

C = S2’S1S0 + S2S1’S0 + S2S1S0’ + S2S1S0

We can substitute XYZ for S2S1S0, resulting in a sum of minterms that 
matches the one we started with on page 13.

C = X’YZ + XY’Z + XYZ’ + XYZ



June 24, 2003 Decoder-based circuits 16

Decoder-based sum

If XYZ is 001, 010, 100 or 111, then one of decoder outputs Q1, Q2, Q4 or 
Q7 will be true, and S(X,Y,Z) will be true as well.
We can verify this circuit algebraically, just like before.

S(X,Y,Z) = Q1 + Q2 + Q4 + Q7
= S2’S1’S0 + S2’S1 S0’ + S2 S1’S0’ + S2 S1 S0
= X’Y’Z + X’YZ’ + XY’Z’ + XYZ
= m1 + m2 + m4 + m7



June 24, 2003 Decoder-based circuits 17

Using just one decoder

Since the two functions C and S both have the same inputs, we could use 
just one decoder instead of two.

Decoder output Q0 is unused, while Q7 is used multiple times. In general, 
you can always use circuit outputs as many or as few times as you need.



June 24, 2003 Decoder-based circuits 18

A variation of the standard decoder

The decoders we’ve seen so far are active-high decoders.

An active-low decoder is similar, but with an inverted EN input and
inverted outputs—exactly one of the outputs will be false. 

1000111
0100011
0010101
0001001

0000xx0

Q3Q2Q1Q0S0S1EN

1111xx1

0111110
1011010
1101100
1110000

Q3’Q2’Q1’Q0’S0S1EN’



June 24, 2003 Decoder-based circuits 19

Separated at birth?

Active-high decoders generate minterms, as we’ve already seen.

Q3 = S1 S0
Q2 = S1 S0’
Q1 = S1’S0
Q0 = S1’S0’

The output equations for an active-low decoder are mysteriously similar, 
yet somehow different.

Q3’ = (S1 S0)’ = S1’+ S0’
Q2’ = (S1 S0’)’ = S1’+ S0
Q1’ = (S1’S0)’ = S1 + S0’
Q0’ = (S1’S0’)’ = S1 + S0

It turns out that active-low decoders generate maxterms, so they can 
implement functions as sums of maxterms. 



June 24, 2003 Decoder-based circuits 20

Active-low decoder example

Here is the carry function C implemented with an active-low decoder.
— Recall from our algebra lecture that Σm(3,5,6,7) = ΠM(0,1,2,4).
— We need an AND gate to generate a product of sums.

The “ground” symbol connected to the EN input represents logical 0, so 
this decoder is always enabled.



June 24, 2003 Decoder-based circuits 21

Programmable logic devices

Building circuits with decoders is so easy that programmable logic devices
are often based around decoders.
The diagram below shows a blank read-only memory, or ROM, device.
— It’s just a decoder whose outputs may be sent to several OR gates.
— The connections between the decoder outputs and the OR gate inputs 

are “programmable,” so different functions can be implemented.
To program a ROM for some specific functions, you just have to make the 
right connections.



June 24, 2003 Decoder-based circuits 22

ROM example

Here are three functions V2, V1 and V0, implemented with our ROM.
Blue crosses (X) indicate connections between decoder outputs and OR 
gates. Empty intersections are not connected.
This is an 8 × 3 ROM since there are 8 decoder outputs and 3 OR gates.

V2 = Σm(1,2,3,4) V1 = Σm(2,6,7) V0 = Σm(4,6,7)



June 24, 2003 Decoder-based circuits 23

The same example again

Here is an alternative presentation of the same 8 × 3 ROM, but with some 
simplified OR gates just to make the diagram neater.

V2 = Σm(1,2,3,4)
V1 = Σm(2,6,7)
V0 = Σm(4,6,7)



June 24, 2003 Decoder-based circuits 24

Why is this called a memory?

You can think of this circuit as performing a computation on the inputs 
A2A1A0, to produce the outputs V2V1V0.
Note that if the same inputs are chosen again, this circuit would perform 
the same calculation again, and produce the same output.
In a sense, the circuit “remembers” the output for each possible input.

110111
110011
000101
101001
001110
011010
001100
000000

V0V1V2A0A1A2



June 24, 2003 Decoder-based circuits 25

Viewing circuits as memories

So you can also think of this circuit as a memory.
— It stores eight values of data, each consisting of three bits V2V1V0.
— A2A1A0 form an address that refers to one of the eight stored values.

This memory is read-only since you can’t modify the data without going 
through the time-consuming process of re-programming the ROM.

110111
110011
000101
101001
001110
011010
001100
000000

V0V1V2A0A1A2
DataAddress



June 24, 2003 Decoder-based circuits 26

Programmable logic arrays

A ROM is potentially inefficient since it uses a decoder, which generates 
all possible minterms. No circuit minimization is done.
Using a ROM to implement an n-input function requires many gates.
— An n-to-2n decoder has n inverters and 2n n-input AND gates.
— We also need an OR gate with up to 2n inputs.
— The number of gates roughly doubles for each additional ROM input.

A programmable logic array or PLA makes the decoder part of the ROM 
programmable too. Instead of generating all possible minterms, you can 
choose which products (not necessarily minterms) to generate.



June 24, 2003 Decoder-based circuits 27

A blank 3 × 4 × 3 PLA

This is a 3 × 4 × 3 PLA (3 
inputs, up to 4 product 
terms, and 3 outputs), 
ready to be programmed.
The left part of this 
diagram replaces the 
decoder used in a ROM.
Connections are made 
within the AND array to 
produce four arbitrary 
products.
Those products are then 
summed in the OR array.

Inputs

Outputs

AND array

OR array



June 24, 2003 Decoder-based circuits 28

Regular K-map minimization

The normal K-map approach is to minimize the number of product terms 
for each individual function.
For our three sample functions, this would result in a total of six different 
product terms.

V2 = Σm(1,2,3,4)
V1 = Σm(2,6,7)
V0 = Σm(4,6,7)

Z

0001X

1110

Y

Z

1100X

1000

Y

Z

1101X

0000

Y

V2 = xy’z’ + x’z + x’y V1 = yz’ + xy V0 = xz’ + xy



June 24, 2003 Decoder-based circuits 29

PLA minimization

But for a PLA, what we really want is to minimize the number of product 
terms in all of the functions.
We could express V2, V1 and V0 with just four total products instead.

V2 = Σm(1,2,3,4)
V1 = Σm(2,6,7)
V0 = Σm(4,6,7)

Z

0001X

1110

Y

Z

1100X

1000

Y

Z

1101X

0000

Y

V2 = xy’z’ + x’z + x’yz’ V1 = x’yz’ + xy V0 = xy’z’ + xy



June 24, 2003 Decoder-based circuits 30

PLA example

So we can implement these three functions using a 3 × 4 × 3 PLA.

xy’z’

xy

x’z

x’yz’

V2 = Σm(1,2,3,4) = xy’z’ + x’z + x’yz’
V1 = Σm(2,6,7) = x’yz’ + xy
V0 = Σm(4,6,7) = xy’z’ + xy



June 24, 2003 Decoder-based circuits 31

PLA evaluation

A k × m × n PLA can implement as many as n functions of k inputs, each 
of which must be expressible with no more than m product terms.
Unlike ROMs, PLAs allow you to choose which products are generated.
— This can significantly reduce the fan-in (number of inputs) of gates, as 

well as the total number of gates.
— However, a PLA is less general than a ROM. Not every function may be 

expressible with the limited number of AND gates in a given PLA.
You can think of PLAs as memories too. 
— A k × m × n PLA has k “address” lines, and each of those 2k addresses 

references an n-bit data value.
— But again, not all possible data values can be stored.



June 24, 2003 Decoder-based circuits 32

Summary

An n-to-2n decoder uses its n-bit input to determine which of 2n outputs is 
uniquely true.
— An n-to-2n decoder generates the minterms of an n-variable function, 

so decoders can be used to implement arbitrary functions.
— Basic decoder variants include enable inputs and active-low decoders, 

which can implement product of maxterms expressions. 
Like muxes, decoders illustrate our circuit analysis and design methods.
— We can implement decoders from an initial problem specification.
— Boolean algebra helps us verify the correctness of our designs.

Programmable devices are two more ways to implement circuits.
— ROMs are simpler to program, but may contain extra gates.
— PLAs use less hardware, but require some minimization effort. Also, 

the AND array size can limit the number of expressible functions.
ROMs and PLAs may be considered as memories. Each input corresponds 
to an address, and the output is the data stored at that address.


	Decoder-based circuits
	Multiplexer review
	What a decoder does
	Building a decoder
	Decoder circuit diagram
	Multiplexers and decoders
	Enable inputs
	A 3-to-8 decoder
	Building a 3-to-8 decoder
	Decoder expansion
	Modularity
	So what good is a decoder?
	Example: addition
	Implementing functions with decoders
	Verifying our adder
	Decoder-based sum
	Using just one decoder
	A variation of the standard decoder
	Separated at birth?
	Active-low decoder example
	Programmable logic devices
	ROM example
	The same example again
	Why is this called a memory?
	Viewing circuits as memories
	Programmable logic arrays
	A blank 3 × 4 × 3 PLA
	Regular K-map minimization
	PLA minimization
	PLA example
	PLA evaluation
	Summary

		hhuang@cs.uiuc.edu
	2003-06-24T00:10:29-0500
	Urbana, Illinois
	Howard Huang
	I am the author of this document




