Basic circuit design and multiplexers

- In the first three lectures we learned all the fundamentals needed for making circuits.
 - Truth tables and Boolean expressions describe functions.
 - Expressions can be converted to circuits.
 - Boolean algebra and K-maps help simplify expressions and circuits.
- Today we'll apply all of these foundations to work with some larger circuits.
- We'll also begin introducing common circuits that we'll be using throughout the summer.

0

Designing circuits

- The goal in circuit design is to build hardware that solves some problem.
- The basic approach is to express the solution as a Boolean function, which can then be converted to a circuit.
 - 1. Figure out how many inputs and outputs you need.
 - 2. Describe the function as a truth table or a Boolean expression.
 - 3. Find a simplified Boolean expression for the function.
 - 4. Build the circuit based on your simplified expression.

Example: comparing 2-bit numbers

- Let's design a circuit that compares two 2-bit numbers, A and B. There are three possible results: A > B, A = B or A < B.
- We will represent the results using three separate outputs.
 - G ("Greater") should be 1 only when A > B.
 - E ("Equal") should be 1 only when A = B.
 - L ("Lesser") should be 1 only when A < B.
- Make sure you understand the problem!
 - Inputs A and B will be 00, 01, 10, or 11 (0, 1, 2 or 3 in decimal).
 - For any inputs A and B, exactly one of the three outputs will be 1.

Step 1: How many inputs and outputs?

- How many inputs and outputs will this circuit have?
 - Two 2-bit numbers means a total of *four* inputs. Let's say the first number consists of bits called A1 and A0 (from left to right), while second number has bits B1 and B0.
 - The problem specifies three outputs: G, E and L.
- Here is a block diagram that shows the inputs and outputs explicitly.

- This is like a function header or prototype in programs, which lists the inputs and outputs of a function.
- Now the hard part is to design the circuitry that goes inside the box.

Step 2: Functional specification

- For this problem, it's probably easiest to start with a truth table. This way we can explicitly show the relationship (>, =, <) between the inputs.
- A four-input function has a sixteen-row truth table. For convenience, the rows are in binary numeric order from 0000 to 1111 for A1, A0, B1 and B0.
- For example, 01 < 10, so the sixth row of the truth table (corresponding to inputs A=01 and B=10) shows that output L=1, while G and E are both 0.

A1	A0	B1	B0	G	Е	L
0	0	0	0	0	1	0
0	0	0	1	0	0	1
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	1	0	0
0	1	0	1	0	1	0
0	1	1	0	0	0	1
0	1	1	1	0	0	1
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	0	1	0
1	0	1	1	0	0	1
1	1	0	0	1	0	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	1	1	1	0	1	0

Step 3: Simplified Boolean expressions

 Let's use K-maps to simplify our circuit. There are three functions (each with the same inputs A1 A0 B1 B0), so we need three K-maps.

Step 4: Drawing the circuits

Basic circuit design and multiplexers

In LogicWorks, binary switches provide inputs to your circuit, and binary probes display the outputs.

Circuit design issues

- We had to find a suitable data representation for the inputs and outputs.
 - The inputs were just two-bit binary numbers.
 - We used three outputs, one for each possibility of the numbers being greater than, equal to, or less than each other. This is called a "one out of three" code.
- K-maps have advantages but also limitations.
 - Our circuits are relatively simple two-level implementations.
 - But E(A1,A0,B1,B0) couldn't be simplified at all via K-maps. Could we do better using Boolean algebra?
- Our circuit isn't very extensible.
 - We used a brute-force approach, listing all inputs and outputs. This makes it hard to extend our circuit to compare larger numbers.
 - We'll have a better solution after we talk about computer arithmetic.
- There are always many possible ways to design a circuit!

Multiplexers

- Let's think about building another circuit, a multiplexer.
- In the old days, several machines could share an I/O device with a switch.

• The switch allows one computer's output to go to the printer's input.

• Here is the circuit analog of that printer switch.

- This is a 2-to-1 multiplexer, or mux.
 - There are two data inputs D0 and D1, and a select input called S.
 - There is one output named Q.
- The multiplexer routes one of its data inputs (D0 or D1) to the output Q, based on the value of S.
 - If S=0, the output will be D0.
 - If S=1, the output will be D1.

Building a multiplexer

 Here is a truth table for the multiplexer, based on our description from the previous page:

> The multiplexer routes one of its data inputs (D0 or D1) to the output Q, based on the value of S.

- If S=0, the output will be D0.
- If S=1, the output will be D1.
- You can then find an MSP for the mux output Q.

Q = S'DO + S D1

 Note that this corresponds closely to our English specification above—sometimes you can derive an expression without first making a truth table.

• Here is an implementation of a 2-to-1 multiplexer.

 Remember that a minimal sum of products expression leads to a minimal two-level circuit.

Blocks, abstraction and modularity

- Multiplexers are common enough that we often want to treat them as abstract units or black boxes, as symbolized by our block diagrams.
 - Block symbols make circuit diagrams simpler, by hiding the internal implementation details. You can use a device without knowing how it's designed, as long as you know what it does.
 - Different multiplexer implementations should be interchangeable.
 - Circuit blocks also aid hardware re-use, since you don't have to keep building a multiplexer from scratch every time you need one.
- These blocks are similar to functions in programming languages!

Enable inputs

- Many devices have an additional enable input, which "activates" or "deactivates" the device.
- We could design a 2-to-1 multiplexer with an enable input that's used as follows.
 - EN=0 disables the multiplexer, which forces the output to be 0. (It does *not* turn off the multiplexer.)
 - EN=1 enables the multiplexer, and it works as specified earlier.
- Enable inputs are especially useful in combining smaller muxes together to make larger ones, as we'll see later today.

Truth table abbreviations

- Notice that when EN=0, then Q is always 0, regardless of what S, D1 and D0 are set to.
- We can shorten the truth table by including Xs in the input variable columns, as shown on the bottom right.

EN	S	D1	D0	Q
0	X	X	X	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

- Also, when EN=1 notice that if S=0 then Q=D0, but if S=1 then Q=D1.
- Another way to abbreviate a truth table is to list input variables in the output columns, as shown on the right.

This final version of the 2-to-1 multiplexer truth table is much clearer, and matches the equation Q = S'D0 + S D1 very closely.

A KVM switch

 This KVM switch allows four computers to share a single keyboard, video monitor, and mouse.

Basic circuit design and multiplexers

A 4-to-1 multiplexer

- Here is a block diagram and abbreviated truth table for a 4-to-1 mux, which directs one of four different inputs to the single output line.
 - There are four data inputs, so we need *two* bits, S1 and S0, for the mux selection input.
 - LogicWorks multiplexers have active-low enable inputs, so the mux always outputs 1 when EN' = 1. This is denoted on the block symbol with a bubble in front of EN.

Q = S1'S0'D0 + S1'S0 D1 + S1 S0'D2 + S1 S0 D3

A 4-to-1 multiplexer implementation

 Again we have a minimal sum of products expression, which leads to a minimal two-level circuit implementation.

Basic circuit design and multiplexers

2ⁿ-to-1 multiplexers

- You can make even larger multiplexers, following the same pattern.
- A 2^{*n*}-to-1 multiplexer routes one of 2^{*n*} input lines to the output line.
 - There are 2^n data inputs, so there must also be *n* select inputs.
 - The output is a single bit.
- Here is an 8-to-1 multiplexer, probably the biggest we'll see in this class.

Example: addition

- Multiplexers can sometimes make circuit design easier.
- As an example, let's make a circuit to add three 1-bit inputs X, Y and Z.
- We'll need two bits to represent the total.
 - The bits will be called C and S, standing for "carry" and "sum."
 - These are two separate functions of the inputs X, Y and Z.
- A truth table and sum of minterm equations for C and S are shown below.

 $C(X,Y,Z) = \Sigma m(3,5,6,7)$ $S(X,Y,Z) = \Sigma m(1,2,4,7)$

Implementing functions with multiplexers

- We could implement a function of *n* variables with an *n*-to-1 multiplexer.
 - The mux select inputs correspond to the function's input variables, and are used to select one row of the truth table.
 - Each mux data input corresponds to one output from the truth table.
 We connect 1 to data input Di for each function minterm m_i, and we connect 0 to the other data inputs.
- For example, here is the carry function, $C(X,Y,Z) = \Sigma m(3,5,6,7)$.

Basic circuit design and multiplexers

Partitioning the truth table

- We can actually implement $C(X,Y,Z) = \Sigma m(3,5,6,7)$ with just a 4-to-1 mux, instead of an 8-to-1.
 - Instead of using three variables to select one row of the truth table, we'll use two variables to pick a *pair* of rows in the table.
 - The multiplexer data inputs will be functions of the remaining variable, which distinguish between the rows in each pair.
- First, we can divide the rows of our truth table into pairs, as shown on the right. X and Y are constant within each pair of rows, so C is a function of Z only.
 - When XY=00, C=0
 - When XY=01, C=Z
 - When XY=10, C=Z
 - When XY=11, C=1

X	Y	Ζ	С
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

A more efficient adder

- All that's left is setting the multiplexer inputs.
 - The two input variables X and Y will be connected to select inputs S1 and S0 of our 4-to-1 multiplexer.
 - The expressions for C(Z) are then connected to the data inputs D0-D3 of the multiplexer.

Verifying our adder

 Don't believe that this works? Start with the equation for a 4-to-1 multiplexer from earlier in the lecture.

Q = S1'S0'D0 + S1'S0 D1 + S1 S0'D2 + S1 S0 D3

 Then just plug in the actual inputs to our circuit, as shown again on the right: S1S0 = XY, D3 = 1, D2 = Z, D1 = Z, and D0 = 0.

$$C = X'Y' \bullet 0 + X'YZ + XY'Z + XY \bullet 1$$

= X'YZ + XY'Z + XY
= X'YZ + XY'Z + XY(Z' + Z)
= X'YZ + XY'Z + XYZ' + XYZ

• So the multiplexer output really is the carry function, $C(X,Y,Z) = \Sigma m(3,5,6,7).$

• Here's the same thing for the sum function, $S(X,Y,Z) = \Sigma m(1,2,4,7)$.

Again, we can show that this is a correct implementation.

$$Q = S1'S0'D0 + S1'S0 D1 + S1 S0'D2 + S1 S0 D3 = X'Y'Z + X'YZ' + XY'Z' + XYZ = \Sigmam(1,2,4,7)$$

Dual multiplexers

- A dual 4-to-1 mux allows you to select from one of four 2-bit data inputs.
- The Mux-4×2 T.S. device in LogicWorks is shown here.
 - The two output bits are 2Q 1Q, and S1-S0 select a *pair* of inputs.
 - LogicWorks labels the x-th bit of data input y as xDy.

EN'	S1	SO	2Q	1Q
0	0	0	2D0	1D0
0	0	1	2D1	1D1
0	1	0	2D2	1D2
0	1	1	2D3	1D3
1	Х	Х	1	1

Dual muxes in more detail

- You could build a dual 4-to-1 mux from its truth table and our familiar circuit design techniques.
- It's also possible to combine smaller muxes together to form larger ones.
- You can build the dual 4-to-1 mux just by using two 4-to-1 muxes.
 - The two 4-to-1 multiplexers share the same EN', S1 and S0 signals.
 - Each smaller mux produces one bit of the two-bit output 2Q 1Q.
- This kind of hierarchical design is very common in computer architecture.

Dual multiplexer-based adder

 We can use this dual 4-to-1 multiplexer to implement our adder, which produces a two-bit output consisting of C and S.

 That KVM switch from earlier is really a "tri 4-to-1 multiplexer," since it selects from four sets of three signals (keyboard, video and mouse).

Summary

- Today we began designing circuits!
 - Starting from a problem description, we came up with a truth table to show all possible inputs and outputs.
 - Then we built the circuit using primitive gates or multiplexers.
- A 2^{*n*}-to-1 multiplexer routes one of 2^{*n*} inputs to a single output line.
 - Muxes are a good example of our circuit design techniques.
 - They also illustrate abstraction and modularity in hardware design.
 - We saw some variations such as active-low and dual multiplexers.
- Tomorrow we'll present another commonly-used device and show how it can also be used in larger circuits.