
June 17, 2003 ©2000-2003 Howard Huang 1

Boolean algebra

Yesterday we talked about how analog voltages can represent the logical
values true and false.
— We introduced the basic Boolean operations AND, OR and NOT, which

can be implemented in hardware with primitive logic gates.
— It follows that any Boolean expression, composed of basic operations,

can be computed with a circuit of primitive gates.
Today we’ll present the axioms of Boolean algebra, and discuss how they
help us simplify functions and circuits.

June 17, 2003 Boolean algebra 2

Operations and gates review

Operation: AND (product)
of two inputs

OR (sum) of
two inputs

NOT (complement)
of one input

Expression: xy or x•y x + y x’ or x

111
001
010
000

xyyx

111
101
110
000

x + yyx

01
10

x’xTruth table:

Logic gate
symbol:

June 17, 2003 Boolean algebra 3

Expressions and circuits

We can build a circuit for any Boolean expression by connecting primitive
logic gates in the correct order.
Yesterday we showed the example circuit below, which accepts inputs x,
y and z, and produces the output (x + y’)z + x’.

June 17, 2003 Boolean algebra 4

Simplifying circuits

The big circuit on the last page is actually equivalent to this simpler one.

Simpler hardware is almost always better.
— In many cases, simpler circuits are faster.
— Less hardware means lower costs.
— A smaller circuit also consumes less power.

So how were we able to simplify this particular circuit?

Smaller is better.

June 17, 2003 Boolean algebra 5

The definition of a Boolean algebra

The secret is Boolean algebra, which lets us simplify Boolean functions
just as regular algebra allows us to manipulate arithmetic functions.
A Boolean algebra requires:
— A set of values with at least two elements, denoted 0 and 1
— Two binary (two-argument) operations + and •
— A unary (one-argument) operation ’

These values and operations must satisfy the axioms shown below.

DeMorgan’s Law(xy)’ = x’ + y’(x + y)’ = x’y’
Distributivex + yz = (x + y)(x + z)x(y + z) = xy + xz
Associativex(yz) = (xy)zx + (y + z) = (x + y) + z
Commutativexy = yxx + y = y + x

(x’)’ = x
x • x’ = 0x + x’ = 1
x • x = xx + x = x
x • 0 = 0x + 1 = 1
x • 1 = xx + 0 = x

June 17, 2003 Boolean algebra 6

Satisfying the axioms

Fortunately, the AND, OR and NOT operations that we defined do satisfy
all of the axioms.

For example, we can show that the axiom x + x’ = 1 always holds.
— There are only two possible values for x, 0 or 1.
— The complement of these values is 1 and 0, by our definition of NOT.
— According to our definition of OR, 0 + 1 = 1, and 1 + 0 = 1.

111
001
010
000

xyyx

111
101
110
000

x + yyx

01
10

x’x

0
1

x’

11
10

x + x’x

June 17, 2003 Boolean algebra 7

Similarities with regular algebra

The axioms in blue look just like regular algebraic rules—this is one of the
reasons we overload the + and • symbols for Boolean operations.
The associative laws show that there is no ambiguity in an expression like
xyz or x + y + z, so we can use multi-input primitive gates as well as our
original two-input gates.

DeMorgan’s Law(xy)’ = x’ + y’(x + y)’ = x’y’
Distributivex + yz = (x + y)(x + z)x(y + z) = xy + xz
Associativex(yz) = (xy)zx + (y + z) = (x + y) + z
Commutativexy = yxx + y = y + x

(x’)’ = x
x • x’ = 0x + x’ = 1
x • x = xx + x = x
x • 0 = 0x + 1 = 1
x • 1 = xx + 0 = x

June 17, 2003 Boolean algebra 8

The complement operation

The magenta axioms deal with the complement operator.
The first three make sense if you think about some English examples.
— “It is snowing or it is not snowing” is always true (x + x’ = 1)
— “It is snowing and it is not snowing” can never be true (x • x’ = 0)
— “I am not not handsome” means “I am handsome” ((x’)’ = x)

DeMorgan’s Law(xy)’ = x’ + y’(x + y)’ = x’y’
Distributivex + yz = (x + y)(x + z)x(y + z) = xy + xz
Associativex(yz) = (xy)zx + (y + z) = (x + y) + z
Commutativexy = yxx + y = y + x

(x’)’ = x
x • x’ = 0x + x’ = 1
x • x = xx + x = x
x • 0 = 0x + 1 = 1
x • 1 = xx + 0 = x

June 17, 2003 Boolean algebra 9

DeMorgan’s Laws

DeMorgan’s Laws explain how to complement arbitrary expressions.

(x + y)’ = x’y’ (xy)’ = x’ + y’

Here are some examples in English.
— “I’m not rich-or-famous” means that I’m not rich and I’m not famous.
— “I am not old-and-bald” means “I am not old or I am not bald.” But I

could be (1) young and bald, (2) young and hairy, or (3) old and hairy.

Who’s
DeMorgan?

June 17, 2003 Boolean algebra 10

Other differences from regular algebra

Finally, the red axioms are completely different from regular algebra.
The first three make sense logically.
— “Anything or true” always holds, even if “anything” is false (x + 1 = 1)
— “I am handsome or I am handsome” is redundant (x + x = x)
— “I am handsome and I am handsome” is also redundant (x • x = x)

The last one, x + yz = (x + y)(x + z), is the least intuitive, but you can
prove it using truth tables or the other axioms.

DeMorgan’s Law(xy)’ = x’ + y’(x + y)’ = x’y’
Distributivex + yz = (x + y)(x + z)x(y + z) = xy + xz
Associativex(yz) = (xy)zx + (y + z) = (x + y) + z
Commutativexy = yxx + y = y + x

(x’)’ = x
x • x’ = 0x + x’ = 1
x • x = xx + x = x
x • 0 = 0x + 1 = 1
x • 1 = xx + 0 = x

June 17, 2003 Boolean algebra 11

Simplifications

Now we can use these axioms to simplify expressions and circuits.

x’y’ + xyz + x’y = x’y’ + x’y + xyz [Commutative]
= x’(y’ + y) + xyz [Distributive]
= (x’ • 1) + xyz [y’ + y = 1]
= x’ + xyz [x’ • 1 = x’]
= (x’ + x)(x’ + yz) [Distributive!]
= 1 • (x’ + yz) [x’ + x = 1]
= x’ + yz

DeMorgan’s Law(xy)’ = x’ + y’(x + y)’ = x’y’
Distributivex + yz = (x + y)(x + z)x(y + z) = xy + xz
Associativex(yz) = (xy)zx + (y + z) = (x + y) + z
Commutativexy = yxx + y = y + x

(x’)’ = x
x • x’ = 0x + x’ = 1
x • x = xx + x = x
x • 0 = 0x + 1 = 1
x • 1 = xx + 0 = x

June 17, 2003 Boolean algebra 12

Simpler expressions yield simpler hardware

Here are circuits corresponding to the original and simplified expressions.

June 17, 2003 Boolean algebra 13

Proofs with truth tables

We also can prove that two expressions are equivalent by showing that
they always produce the same results for the same inputs.

Here are truth tables proving one of DeMorgan’s Laws, (x + y)’ = x’y’.
— The leftmost columns in each table show all the possible inputs.
— The columns on the right are the outputs.
— Additional columns can aid in showing intermediate results.

Both of the output columns are the same, so we know that (x + y)’ and
x’y’ must be equivalent.

0111
0101
0110
1000

(x + y)’x + yyx

0
1
0
1

y’

0011
0001
0110
1100

x’y’x’yx

June 17, 2003 Boolean algebra 14

Duality

There’s a reason why the table of axioms has two columns. The laws on
the left and right are duals of each other.
— The AND and OR operators are exchanged.
— The constant values 0 and 1 are also exchanged.

The dual of any equation is always true. If E and F are two equivalent
expressions, the dual of E will also be equivalent to the dual of F.

DeMorgan’s Law(xy)’ = x’ + y’(x + y)’ = x’y’
Distributivex + yz = (x + y)(x + z)x(y + z) = xy + xz
Associativex(yz) = (xy)zx + (y + z) = (x + y) + z
Commutativexy = yxx + y = y + x

(x’)’ = x
x • x’ = 0x + x’ = 1
x • x = xx + x = x
x • 0 = 0x + 1 = 1
x • 1 = xx + 0 = x

June 17, 2003 Boolean algebra 15

Some more laws

Some other useful equations are shown below.
— They can all be proven from the axioms we already showed.
— Notice that each law also has a dual.

Feel free to use these in homeworks and exams.

(x + y)(x’ + z)(y + z) = (x + y)(x’ + z)xy + x’z + yz = xy + x’z
x(x’ + y) = xyx + x’y = x + y
(x + y)(x + y’) = xxy + xy’ = x
x(x + y) = xx + xy = x

June 17, 2003 Boolean algebra 16

Why is it called Boolean algebra?

It was invented by George Boole way back in the 1850s!
Obviously, that was before they had digital cameras.

It wasn’t until about 1937 that Claude Shannon got the idea
to apply Boolean algebra to circuit design.
This, as well as several other things, made Shannon so rich-
and-famous that he retired when he was just 50.

June 17, 2003 Boolean algebra 17

Complementing a truth table

The complement of a function should output 0 when the original function
outputs 1, and vice versa.
In a truth table, we can just exchange 0 and 1 in the output column.
— On the left is a truth table for f(x,y,z) = (x + y’)z + x’.
— On the right is the table for the complement of f, denoted f’(x,y,z).

1111
0011
1101
0001

1110
1010
1100
1000

f(x,y,z)zyx

0111
1011
0101
1001

0110
0010
0100
0000

f’(x,y,z)zyx

June 17, 2003 Boolean algebra 18

Complementing an expression

To complement an expression, you can use DeMorgan’s Laws to keep
“pushing” the NOT operator inwards, all the way to the literals.

f(x,y,z) = (x + y’)z + x’

f’(x,y,z) = ((x + y’)z + x’)’ [complementing both sides]
= ((x + y’)z)’ • (x’)’ [because (x + y)’ = x’y’]
= ((x + y’)’ + z’) • x [(xy)’ = x’ + y’, and (x’)’ = x]
= (x’y + z’) • x [(x + y)’ = x’y’ again]

Another clever method of complementing an expression is to take the
dual of the expression, and then complement each literal.
— The dual of (x + y’)z + x’ is (xy’ + z) • x’.
— Complementing each literal yields (x’y + z’) • x.
— So f’(x,y,z) = (x’y + z’) • x.

June 17, 2003 Boolean algebra 19

Sum of products expressions

There are many equivalent ways to write a function, but some forms turn
out to be more useful than others.
A sum of products or SOP expression consists of:
— One or more terms summed (OR’ed) together.
— Each of those terms is a product of literals.

f(x, y, z) = y’ + x’yz’ + xz

Sum of products expressions can be implemented with two-level circuits.

Levels: 0 1 2

June 17, 2003 Boolean algebra 20

Minterms

A minterm is a special product of literals, in which each input variable
appears exactly once.
A function with n input variables has 2n possible minterms.
For instance, a three-variable function f(x,y,z) has 8 possible minterms:

x’y’z’ x’y’z x’y z’ x’y z
x y’z’ x y’z x y z’ x y z

Each minterm is true for exactly one combination of inputs.

m7xyz = 111x y z
m6xyz = 110x y z’
m5xyz = 101x y’z
m4xyz = 100x y’z’
m3xyz = 011x’y z
m2xyz = 010x’y z’
m1xyz = 001x’y’z
m0xyz = 000x’y’z’

ShorthandTrue whenMinterm Hey! This
looks like a
truth table!

June 17, 2003 Boolean algebra 21

Sum of minterms expressions

A sum of minterms is a special kind of sum of products.
Every function can be written as a unique sum of minterms expression.
A truth table for a function can be rewritten as a sum of minterms just by
finding the table rows where the function output is 1.

01111
01011
01101
10001

01110
10010
10100
10000

C’(x,y,z)C(x,y,z)zyx C = x’yz + xy’z + xyz’ + xyz
= m3 + m5 + m6 + m7
= Σm(3,5,6,7)

C’ = x’y’z’ + x’y’z + x’yz’ + xy’z’
= m0 + m1 + m2 + m4
= Σm(0,1,2,4)

C’ contains all the minterms not in C,
and vice versa.

June 17, 2003 Boolean algebra 22

Product of sums expressions

As you might expect, we can work with the duals of these ideas too.
A product of sums or POS consists of:
— One or more terms multiplied (AND’ed) together.
— Each of those terms is a sum of literals.

g(x, y, z) = y’(x’ + y + z’)(x + z)

Products of sums can also be implemented with two-level circuits.

Levels: 0 1 2

June 17, 2003 Boolean algebra 23

Maxterms

A maxterm is a sum of literals where each input variable appears once.
A function with n input variables has 2n possible maxterms.
For instance, a function with three variables x, y and z has 8 possible
maxterms:

x + y + z x + y + z’ x + y’+ z x + y’+ z’
x’+ y + z x’+ y + z’ x’+ y’+ z x’+ y’+ z’

Each maxterm is false for exactly one combination of inputs.

M7xyz = 111x’+ y’+ z’
M6xyz = 110x’+ y’+ z
M5xyz = 101x’+ y + z’
M4xyz = 100x’+ y + z
M3xyz = 011x + y’+ z’
M2xyz = 010x + y’+ z
M1xyz = 001x + y + z’
M0xyz = 000x + y + z

ShorthandFalse whenMaxterm

June 17, 2003 Boolean algebra 24

Product of maxterms expressions

Every function can also be written as a unique product of maxterms.
A truth table for a function can be rewritten as a product of maxterms
just by finding the table rows where the function output is 0.

C = (x + y + z)(x + y + z’)
(x + y’ + z)(x’ + y + z)

= M0 M1 M2 M4
= ∏M(0,1,2,4)

C’ = (x + y’ + z’)(x’ + y + z’)
(x’ + y’ + z)(x’ + y’ + z’)

= M3 M5 M6 M7
= ∏M(3,5,6,7)

C’ contains all the maxterms not in
C, and vice versa.

01111
01011
01101
10001

01110
10010
10100
10000

C’(x,y,z)C(x,y,z)zyx

June 17, 2003 Boolean algebra 25

Minterms and maxterms, oh my!

Now we’ve seen two different ways to write the function C, as a sum of
minterms Σm(3,5,6,7) and as a product of maxterms ΠM(0,1,2,4).
Notice the product term includes maxterm numbers whose corresponding
minterms do not appear in the sum expression.

1111
1011
1101
0001

1110
0010
0100
0000

C(x,y,z)zyx

C = x’yz + xy’z + xyz’ + xyz
= m3 + m5 + m6 + m7
= Σm(3,5,6,7)

C = (x + y + z)(x + y + z’)
(x + y’ + z)(x’ + y + z)

= M0 M1 M2 M4
= ∏ M(0,1,2,4)

June 17, 2003 Boolean algebra 26

The relationship revealed

Every minterm mi is the complement of its corresponding maxterm Mi.

For example, m4’ = M4 because (xy’z’)’ = x’ + y + z.

xyz = 111(M7) x’+ y’+ z’
xyz = 110(M6) x’+ y’+ z
xyz = 101(M5) x’+ y + z’
xyz = 100(M4) x’+ y + z
xyz = 011(M3) x + y’+ z’
xyz = 010(M2) x + y’+ z
xyz = 001(M1) x + y + z’
xyz = 000(M0) x + y + z

False whenMaxterm

xyz = 111(m7) x y z
xyz = 110(m6) x y z’
xyz = 101(m5) x y’z
xyz = 100(m4) x y’z’
xyz = 011(m3) x’y z
xyz = 010(m2) x’y z’
xyz = 001(m1) x’y’z
xyz = 000(m0) x’y’z’
True whenMinterm

June 17, 2003 Boolean algebra 27

Converting between standard forms

We can convert sums of minterms to products of maxterms algebraically.

C = Σm(3,5,6,7)

C’ = Σm(0,1,2,4) [C’ contains the minterms not in C]
= m0 + m1 + m2 + m4

(C’)’ = (m0 + m1 + m2 + m4)’ [complementing both sides]
C = m0’ m1’ m2’ m4’ [DeMorgan’s law]

= M0 M1 M2 M4 [from the previous page]
= ∏M(0,1,2,4)

The easy way is to replace minterms with maxterms, using the maxterm
numbers that do not appear in the sum of minterms.

C = Σm(3,5,6,7)
= ∏ M(0,1,2,4)

June 17, 2003 Boolean algebra 28

Summary

We saw two ways to prove the equivalence of expressions.
— Truth tables show that all possible inputs yield the same outputs.
— Boolean algebra is especially useful for simplifying expressions, and

therefore circuits as well.
Expressions can be written in many ways, so standard representations
like sums of products and sums of minterms are often useful. We will
sometimes see products of sums and products of maxterms too.
Tomorrow we’ll introduce a more “graphical” simplification technique.
Then we can start to build and analyze larger, more realistic circuits!

	Boolean algebra
	Operations and gates review
	Expressions and circuits
	Simplifying circuits
	The definition of a Boolean algebra
	Satisfying the axioms
	Similarities with regular algebra
	The complement operation
	DeMorgan’s Laws
	Other differences from regular algebra
	Simplifications
	Simpler expressions yield simpler hardware
	Proofs with truth tables
	Duality
	Some more laws
	Why is it called Boolean algebra?
	Complementing a truth table
	Complementing an expression
	Sum of products expressions
	Minterms
	Sum of minterms expressions
	Product of sums expressions
	Maxterms
	Product of maxterms expressions
	Minterms and maxterms, oh my!
	The relationship revealed
	Converting between standard forms
	Summary

		hhuang@cs.uiuc.edu
	2003-07-06T14:29:28-0500
	Urbana, Illinois
	Howard Huang
	I am the author of this document

