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Boolean algebra

Yesterday we talked about how analog voltages can represent the logical 
values true and false.
— We introduced the basic Boolean operations AND, OR and NOT, which 

can be implemented in hardware with primitive logic gates.
— It follows that any Boolean expression, composed of basic operations, 

can be computed with a circuit of primitive gates.
Today we’ll present the axioms of Boolean algebra, and discuss how they 
help us simplify functions and circuits.
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Operations and gates review

Operation: AND (product)
of two inputs

OR (sum) of
two inputs

NOT (complement)
of one input

Expression: xy or x•y x + y x’ or x

111
001
010
000

xyyx

111
101
110
000

x + yyx

01
10

x’xTruth table:

Logic gate
symbol:
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Expressions and circuits

We can build a circuit for any Boolean expression by connecting primitive 
logic gates in the correct order.
Yesterday we showed the example circuit below, which accepts inputs x, 
y and z, and produces the output (x + y’)z + x’.
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Simplifying circuits

The big circuit on the last page is actually equivalent to this simpler one. 

Simpler hardware is almost always better.
— In many cases, simpler circuits are faster.
— Less hardware means lower costs.
— A smaller circuit also consumes less power.

So how were we able to simplify this particular circuit?

Smaller is better.
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The definition of a Boolean algebra

The secret is Boolean algebra, which lets us simplify Boolean functions 
just as regular algebra allows us to manipulate arithmetic functions.
A Boolean algebra requires:
— A set of values with at least two elements, denoted 0 and 1
— Two binary (two-argument) operations + and •
— A unary (one-argument) operation ’

These values and operations must satisfy the axioms shown below.

DeMorgan’s Law(xy)’ = x’ + y’(x + y)’ = x’y’
Distributivex + yz = (x + y)(x + z)x(y + z) = xy + xz
Associativex(yz) = (xy)zx + (y + z) = (x + y) + z
Commutativexy = yxx + y = y + x

(x’)’ = x
x • x’ = 0x + x’ = 1
x • x = xx + x = x
x • 0 = 0x + 1 = 1
x • 1 = xx + 0 = x



June 17, 2003 Boolean algebra 6

Satisfying the axioms

Fortunately, the AND, OR and NOT operations that we defined do satisfy 
all of the axioms.

For example, we can show that the axiom x + x’ = 1 always holds.
— There are only two possible values for x, 0 or 1.
— The complement of these values is 1 and 0, by our definition of NOT.
— According to our definition of OR, 0 + 1 = 1, and 1 + 0 = 1.

111
001
010
000

xyyx

111
101
110
000

x + yyx

01
10

x’x

0
1

x’

11
10

x + x’x
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Similarities with regular algebra

The axioms in blue look just like regular algebraic rules—this is one of the 
reasons we overload the + and • symbols for Boolean operations.
The associative laws show that there is no ambiguity in an expression like 
xyz or x + y + z, so we can use multi-input primitive gates as well as our
original two-input gates.

DeMorgan’s Law(xy)’ = x’ + y’(x + y)’ = x’y’
Distributivex + yz = (x + y)(x + z)x(y + z) = xy + xz
Associativex(yz) = (xy)zx + (y + z) = (x + y) + z
Commutativexy = yxx + y = y + x

(x’)’ = x
x • x’ = 0x + x’ = 1
x • x = xx + x = x
x • 0 = 0x + 1 = 1
x • 1 = xx + 0 = x
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The complement operation

The magenta axioms deal with the complement operator.
The first three make sense if you think about some English examples.
— “It is snowing or it is not snowing” is always true (x + x’ = 1)
— “It is snowing and it is not snowing” can never be true (x • x’ = 0)
— “I am not not handsome” means “I am handsome” ((x’)’ = x)

DeMorgan’s Law(xy)’ = x’ + y’(x + y)’ = x’y’
Distributivex + yz = (x + y)(x + z)x(y + z) = xy + xz
Associativex(yz) = (xy)zx + (y + z) = (x + y) + z
Commutativexy = yxx + y = y + x

(x’)’ = x
x • x’ = 0x + x’ = 1
x • x = xx + x = x
x • 0 = 0x + 1 = 1
x • 1 = xx + 0 = x
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DeMorgan’s Laws

DeMorgan’s Laws explain how to complement arbitrary expressions.

(x + y)’ = x’y’ (xy)’ = x’ + y’

Here are some examples in English.
— “I’m not rich-or-famous” means that I’m not rich and I’m not famous.
— “I am not old-and-bald” means “I am not old or I am not bald.” But I 

could be (1) young and bald, (2) young and hairy, or (3) old and hairy.

Who’s 
DeMorgan?
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Other differences from regular algebra

Finally, the red axioms are completely different from regular algebra.
The first three make sense logically.
— “Anything or true” always holds, even if “anything” is false (x + 1 = 1)
— “I am handsome or I am handsome” is redundant (x + x = x)
— “I am handsome and I am handsome” is also redundant (x • x = x)

The last one, x + yz = (x + y)(x + z), is the least intuitive, but you can 
prove it using truth tables or the other axioms.

DeMorgan’s Law(xy)’ = x’ + y’(x + y)’ = x’y’
Distributivex + yz = (x + y)(x + z)x(y + z) = xy + xz
Associativex(yz) = (xy)zx + (y + z) = (x + y) + z
Commutativexy = yxx + y = y + x

(x’)’ = x
x • x’ = 0x + x’ = 1
x • x = xx + x = x
x • 0 = 0x + 1 = 1
x • 1 = xx + 0 = x
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Simplifications

Now we can use these axioms to simplify expressions and circuits.

x’y’ + xyz + x’y = x’y’ + x’y + xyz [ Commutative ]
= x’(y’ + y) + xyz [ Distributive ]
= (x’ • 1) + xyz [ y’ + y = 1 ]
= x’ + xyz [ x’ • 1 = x’ ]
= (x’ + x)(x’ + yz) [ Distributive! ]
= 1 • (x’ + yz) [ x’ + x = 1 ]
= x’ + yz

DeMorgan’s Law(xy)’ = x’ + y’(x + y)’ = x’y’
Distributivex + yz = (x + y)(x + z)x(y + z) = xy + xz
Associativex(yz) = (xy)zx + (y + z) = (x + y) + z
Commutativexy = yxx + y = y + x

(x’)’ = x
x • x’ = 0x + x’ = 1
x • x = xx + x = x
x • 0 = 0x + 1 = 1
x • 1 = xx + 0 = x
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Simpler expressions yield simpler hardware

Here are circuits corresponding to the original and simplified expressions.
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Proofs with truth tables

We also can prove that two expressions are equivalent by showing that 
they always produce the same results for the same inputs.

Here are truth tables proving one of DeMorgan’s Laws, (x + y)’ = x’y’.
— The leftmost columns in each table show all the possible inputs.
— The columns on the right are the outputs.
— Additional columns can aid in showing intermediate results.

Both of the output columns are the same, so we know that (x + y)’ and 
x’y’ must be equivalent.

0111
0101
0110
1000

(x + y)’x + yyx

0
1
0
1

y’

0011
0001
0110
1100

x’y’x’yx
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Duality

There’s a reason why the table of axioms has two columns. The laws on 
the left and right are duals of each other.
— The AND and OR operators are exchanged.
— The constant values 0 and 1 are also exchanged.

The dual of any equation is always true. If E and F are two equivalent 
expressions, the dual of E will also be equivalent to the dual of F.

DeMorgan’s Law(xy)’ = x’ + y’(x + y)’ = x’y’
Distributivex + yz = (x + y)(x + z)x(y + z) = xy + xz
Associativex(yz) = (xy)zx + (y + z) = (x + y) + z
Commutativexy = yxx + y = y + x

(x’)’ = x
x • x’ = 0x + x’ = 1
x • x = xx + x = x
x • 0 = 0x + 1 = 1
x • 1 = xx + 0 = x
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Some more laws

Some other useful equations are shown below.
— They can all be proven from the axioms we already showed.
— Notice that each law also has a dual.

Feel free to use these in homeworks and exams.

(x + y)(x’ + z)(y + z) = (x + y)(x’ + z)xy + x’z + yz = xy + x’z
x(x’ + y) = xyx + x’y = x + y
(x + y)(x + y’) = xxy + xy’ = x
x(x + y) = xx + xy = x
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Why is it called Boolean algebra?

It was invented by George Boole way back in the 1850s!
Obviously, that was before they had digital cameras.

It wasn’t until about 1937 that Claude Shannon got the idea 
to apply Boolean algebra to circuit design. 
This, as well as several other things, made Shannon so rich-
and-famous that he retired when he was just 50.
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Complementing a truth table

The complement of a function should output 0 when the original function 
outputs 1, and vice versa.
In a truth table, we can just exchange 0 and 1 in the output column.
— On the left is a truth table for f(x,y,z) = (x + y’)z + x’.
— On the right is the table for the complement of f, denoted f’(x,y,z).

1111
0011
1101
0001

1110
1010
1100
1000

f(x,y,z)zyx

0111
1011
0101
1001

0110
0010
0100
0000

f’(x,y,z)zyx
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Complementing an expression

To complement an expression, you can use DeMorgan’s Laws to keep
“pushing” the NOT operator inwards, all the way to the literals.

f(x,y,z) = (x + y’)z + x’

f’(x,y,z) = ((x + y’)z + x’)’ [ complementing both sides ]
= ((x + y’)z)’ • (x’)’ [ because (x + y)’ = x’y’ ]
= ((x + y’)’ + z’) • x [ (xy)’ = x’ + y’, and (x’)’ = x ]
= (x’y + z’) • x [ (x + y)’ = x’y’ again ]

Another clever method of complementing an expression is to take the 
dual of the expression, and then complement each literal.
— The dual of (x + y’)z + x’ is (xy’ + z) • x’.
— Complementing each literal yields (x’y + z’) • x.
— So f’(x,y,z) = (x’y + z’) • x.
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Sum of products expressions

There are many equivalent ways to write a function, but some forms turn 
out to be more useful than others.
A sum of products or SOP expression consists of:
— One or more terms summed (OR’ed) together.
— Each of those terms is a product of literals.

f(x, y, z) = y’ + x’yz’ + xz

Sum of products expressions can be implemented with two-level circuits.

Levels: 0 1 2
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Minterms

A minterm is a special product of literals, in which each input variable 
appears exactly once.
A function with n input variables has 2n possible minterms.
For instance, a three-variable function f(x,y,z) has 8 possible minterms:

x’y’z’ x’y’z x’y z’ x’y z
x y’z’ x y’z x y z’ x y z

Each minterm is true for exactly one combination of inputs.

m7xyz = 111x y z
m6xyz = 110x y z’
m5xyz = 101x y’z
m4xyz = 100x y’z’
m3xyz = 011x’y z
m2xyz = 010x’y z’
m1xyz = 001x’y’z
m0xyz = 000x’y’z’

ShorthandTrue whenMinterm Hey! This 
looks like a 
truth table!
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Sum of minterms expressions

A sum of minterms is a special kind of sum of products.
Every function can be written as a unique sum of minterms expression.
A truth table for a function can be rewritten as a sum of minterms just by 
finding the table rows where the function output is 1.

01111
01011
01101
10001

01110
10010
10100
10000

C’(x,y,z)C(x,y,z)zyx C = x’yz + xy’z + xyz’ + xyz
= m3 + m5 + m6 + m7
= Σm(3,5,6,7)

C’ = x’y’z’ + x’y’z + x’yz’ + xy’z’
= m0 + m1 + m2 + m4
= Σm(0,1,2,4)

C’ contains all the minterms not in C,
and vice versa.
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Product of sums expressions

As you might expect, we can work with the duals of these ideas too.
A product of sums or POS consists of:
— One or more terms multiplied (AND’ed) together.
— Each of those terms is a sum of literals.

g(x, y, z) = y’(x’ + y + z’)(x + z)

Products of sums can also be implemented with two-level circuits.

Levels: 0 1 2
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Maxterms

A maxterm is a sum of literals where each input variable appears once.
A function with n input variables has 2n possible maxterms.
For instance, a function with three variables x, y and z has 8 possible 
maxterms:

x + y + z x + y + z’ x + y’+ z x + y’+ z’
x’+ y + z x’+ y + z’ x’+ y’+ z x’+ y’+ z’

Each maxterm is false for exactly one combination of inputs.

M7xyz = 111x’+ y’+ z’
M6xyz = 110x’+ y’+ z
M5xyz = 101x’+ y + z’
M4xyz = 100x’+ y + z
M3xyz = 011x + y’+ z’
M2xyz = 010x + y’+ z
M1xyz = 001x + y + z’
M0xyz = 000x + y + z

ShorthandFalse whenMaxterm
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Product of maxterms expressions

Every function can also be written as a unique product of maxterms.
A truth table for a function can be rewritten as a product of maxterms
just by finding the table rows where the function output is 0.

C = (x + y + z)(x + y + z’)
(x + y’ + z)(x’ + y + z)

= M0 M1 M2 M4
= ∏M(0,1,2,4)

C’ = (x + y’ + z’)(x’ + y + z’)
(x’ + y’ + z)(x’ + y’ + z’)

= M3 M5 M6 M7
= ∏M(3,5,6,7)

C’ contains all the maxterms not in 
C, and vice versa.

01111
01011
01101
10001

01110
10010
10100
10000

C’(x,y,z)C(x,y,z)zyx
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Minterms and maxterms, oh my!

Now we’ve seen two different ways to write the function C, as a sum of 
minterms Σm(3,5,6,7) and as a product of maxterms ΠM(0,1,2,4). 
Notice the product term includes maxterm numbers whose corresponding 
minterms do not appear in the sum expression.

1111
1011
1101
0001

1110
0010
0100
0000

C(x,y,z)zyx

C = x’yz + xy’z + xyz’ + xyz
= m3 + m5 + m6 + m7
= Σm(3,5,6,7)

C = (x + y + z)(x + y + z’)
(x + y’ + z)(x’ + y + z)

= M0 M1 M2 M4
= ∏ M(0,1,2,4)
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The relationship revealed

Every minterm mi is the complement of its corresponding maxterm Mi.

For example, m4’ = M4 because (xy’z’)’ = x’ + y + z.

xyz = 111(M7)   x’+ y’+ z’
xyz = 110(M6)   x’+ y’+ z
xyz = 101(M5)   x’+ y + z’
xyz = 100(M4)   x’+ y + z
xyz = 011(M3)   x + y’+ z’
xyz = 010(M2)   x + y’+ z
xyz = 001(M1)   x + y + z’
xyz = 000(M0)   x + y + z

False whenMaxterm

xyz = 111(m7)   x y z
xyz = 110(m6)   x y z’
xyz = 101(m5)   x y’z
xyz = 100(m4)   x y’z’
xyz = 011(m3)   x’y z
xyz = 010(m2)   x’y z’
xyz = 001(m1)   x’y’z
xyz = 000(m0)   x’y’z’
True whenMinterm
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Converting between standard forms

We can convert sums of minterms to products of maxterms algebraically.

C = Σm(3,5,6,7)

C’ = Σm(0,1,2,4) [ C’ contains the minterms not in C ]
= m0 + m1 + m2 + m4

(C’)’ = (m0 + m1 + m2 + m4)’ [ complementing both sides ]
C = m0’ m1’ m2’ m4’ [ DeMorgan’s law ]

= M0 M1 M2 M4 [ from the previous page ]
= ∏M(0,1,2,4)

The easy way is to replace minterms with maxterms, using the maxterm
numbers that do not appear in the sum of minterms.

C = Σm(3,5,6,7)
= ∏ M(0,1,2,4)
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Summary

We saw two ways to prove the equivalence of expressions.
— Truth tables show that all possible inputs yield the same outputs.
— Boolean algebra is especially useful for simplifying expressions, and 

therefore circuits as well.
Expressions can be written in many ways, so standard representations 
like sums of products and sums of minterms are often useful. We will 
sometimes see products of sums and products of maxterms too.
Tomorrow we’ll introduce a more “graphical” simplification technique. 
Then we can start to build and analyze larger, more realistic circuits!
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