
Type Reconstruction for Syntactic Control of Interference� Part �

Hongseok Yang Howard Huang

Department of Computer Science Department of Computer Science

University of Illinois University of Illinois

Urbana� IL ����� Urbana� IL �����

Abstract

Syntactic Control of Interference �SCI� ���� has long
been studied as a basis for interference�free program�
ming� with cleaner reasoning properties and seman�
tics than traditional imperative languages� This paper
improves upon Huang and Reddy	s type inference
system ��� for SCI�based languages in two signi
cant
ways� First� we eliminate the need for explicit
coercion operators in terms� Second� we consider
adding let�bound polymorphism� which appears to be
nontrivial in the presence of interference control�
SCI can be adapted to a wide variety of languages�
and our techniques should be applicable to any such
language with SCI�based interference control�

� Introduction

One of the main challenges in reasoning about
imperative programs is dealing with interference�
which occurs when the execution of one program
phrase a�ects the outcome of another� Interference
can appear in many forms� such as aliasing� which
invalidate traditional reasoning techniques� Even
worse� it can be quite di�cult for both users and
machines to detect interference�

The example program in Figure �� adopted
from ����� illustrates some of the problems� The
procedure map applies its argument p to each ele�
ment of a linked list of integers� represented by i�
Procedure reclaim inserts a node i into a list of free
nodes� represented by the global variable free of type
var�int�� For simplicity� we represent lists using arrays
of integer variables	 next holds the indices of the next
nodes� and another array would contain the integer
values of the list�

The call
map reclaim data� may appear to be a
reasonable way to delete all elements of a list data�
Unfortunately� reclaim modi�es next�i� to be the
head of the old free list� so the second node that is
reclaimed actually belongs to the free list� not data

To ensure correctness� the arguments to a function

map � �p� int � comm� �i� int�
if �i �� �� then

p i�
map p next�i�

reclaim � �i� int�
next�i� �� free�
free �� i

Figure �	 Example of procedures which interfere

should not interfere with the function itself� but it is
not always obvious when this condition holds� In this
case� the execution of reclaim adversely a�ects map
via the shared array next�

Language designers have tried to address inter�
ference using a variety of approaches� In �����
Reynolds proposed Syntactic Control of Interference�
or SCI ����� which syntactically restricts a language
to prevent undesired interference and make it clear
where interference occurs� O�Hearn et al� later
developed SCIR ����� a type system and semantics
for SCI� But SCI also needs practical type infer�
ence algorithms� which have long been available for
functional languages with state
but in the absence
of interference control�� such as ML and Haskell�

Huang and Reddy �rst studied the problem of type
inference for SCIR ���� It can be shown that SCIR
does not have principal typings� there may exist many
possible type derivations for a term because of the
interaction between the Passi�cation and Contraction
rules� Huang and Reddy were able to infer principal
typings in their SCIRK system by extending SCIR
judgements with kind constraints that specify the
conditions under which a term is well�typed�

Our work improves upon their system in
two important ways� First� the promote and
derelict operators are explicit in the term syntax
of SCIRK � but they were implicit in Reynolds�s
original proposal� Intuitively� these operations do
not a�ect any change of meaning� i�e�� the implicit

language is coherent ����� In this paper� we devise
type inference algorithms that allow many of these
coercion operators to be left implicit�
Second� there is no provision for polymorphism in

SCIRK � Traditional type inference techniques for
let terms� such as using type quanti�cation ��� or
substitution ����� do not seem applicable to SCIR�
We suggest a di�erent approach which supports poly�
morphism in conjunction with interference control�
Passive types of SCI form what are called re�ective

type classes in ����� Various other instances of
re�ective type classes that are useful in imperative
programming are mentioned there� Applicative types
in imperative lambda calculus ���� and typed �var ���
also form re�ective type classes� The constraint�
based techniques we present for passive types are
applicable to all such re�ective type classes�
The next section of this paper reviews the prin�

ciples of SCI and presents the SCIR type system�
Section � introduces our extended type system with
implicit coercions and let�based polymorphism� In
Section �� we outline an inference algorithm based on
this type system� Concluding remarks are given in
Section ��
Proofs are omitted from this paper due to space

limitations� The full paper will be available as �����

��� Related Work

Constraint�based type inference systems have been
designed for many languages� including ones that sup�
port subtyping ��� ���� objects ���� overloading ��� ����
and linear types ����� The inference issues in ���� are
especially close to ours� and we received considerable
inspiration from this work� One novel aspect of our
system which does not arise in these other works
is the need to associate constraints with each free
identi�er of a term� instead of requiring just a single
constraint per typing judgement�
Other lines of research also address issues of in�

terference� E�ect systems ���� use types to specify�
but not control� the side e�ects that may occur in
program phrases�
Research on extending functional languages with

state includes ��� ��� ��� In these systems� the state
is single�threaded and references cannot escape the
thread� but interference may still occur within a
thread�
Our work incorporates some ideas from the type

inference algorithm for ILCR� an imperative lambda
calculus ����� In particular� ILCR supports implicit
coercion of terms between state�dependent and state�
independent types� which corresponds closely to the
promote and derelict operators of SCIR�

� The SCIR Type System

We introduce the concepts of SCI in the context of an
Algol�like functional language with state and call�by�
name evaluation ����� There are two kinds of types�
Data types � represent storable values such as int and
bool� Phrase types �� given by the following abstract
syntax� are the types of arbitrary terms	

� 		� � j var��� j comm j �� � �� j �� � ��

Types �
sometimes written exp���� are the types
of state�dependent expressions which yield ��typed
values� var��� is the type of storage variables that hold
��typed values� and comm is the type of commands
that modify the state� Type constructors � and �
are as in typed lambda calculus�
Some typical terms of Algol�like languages are

given by the following syntax� where c ranges over
a set of constants and i ranges over f�� �g	

M 		� c j x j �x�M jM�M� j hM�� M�i j �iM j
if M� then M� else M� j rec M j
do����x�M j skip jM� 	�M� j get
M� j
M��M� j new����x�M

The functional side of the language is ��calculus with
pairs� conditionals and the recursive Y�combinator�
The term do����x�M allows computations which
manipulate only local state to be embedded in a
��typed term	 the command M is executed with x
bound to a new variable of type var���� The result
of the term is the ��typed value stored in x upon
completion of M � In the recommended usage� M
should not cause any �side e�ects�� or changes to
non�local variables other than x�
The basic commands include skip� assignments and

variable dereferencing� The ��� operator sequences
commands� Finally� new����x�M executes the com�
mandM after binding x to a newly allocated variable
of type var����

��� SCIR

The basic approach of SCI is to focus on the free
identi�ers of terms� As a �rst approximation� we pre�
sume that two terms interfere if they have common
free identi�ers� For example� the terms x 	� get
x���
and y 	� get
x� interfere because x is free in both
terms� and the assignment to x can obviously a�ect
the result of the assignment to y�
Terms without common free identi�ers can be said

to be noninterfering only if distinct identi�ers do
not interfere� In our example language� the only
way to bind identi�ers is via new� do and function

applications� new and do always create fresh storage
locations� which cannot be aliased� For applications
MN � SCI requires thatM and N do not interfere� If
they did interfere� then the lambda�bound identi�er
of the function M could be an alias to other free
identi�ers of M � For example� in the term

�x� x 	� get
x� � �� y 	� get
y� � ��
y�

the function and the argument interfere
they both
have the free identi�er y�� and x and y are aliases
within the function body�

This basic de�nition of interference is too restric�
tive� It disallows terms such as
plus get
x��
get
x��
because x occurs free in both the function and
argument� But intuitively� since x is never assigned
to� the subterms cannot interfere with each other�

To allow such terms� Reynolds designates a subset
of the types as passive types� Terms with passive
types are guaranteed not to have any side e�ects and
cannot interfere with other passive terms�� In our
language� the types � are passive� and a product type
��� �� is passive i� �� and �� are both passive types�
A function type �� � �� is passive i� �� is passive�
The argument type is inconsequential� because as
long as the body has a passive type� it cannot �use�
any arguments of non�passive type�

A free identi�er x of a term M is a passive free
identi
er if it always occurs in some passively�typed
subterm of M � regardless of whether or not x has
a passive type� For example� in the addition term
above� the type of x� viz� var�int�� is not passive� But
x is a passive free identi�er� because both occurrences
of x are in subterms of passive type
namely get
x��
which has type int��

We can now relax the original de�nition of interfer�
ence� and say that two terms interfere if their shared
identi�ers are not passive free identi�ers� Therefore�
the addition term above is considered well�typed�

Functions are often regarded as free from side
e�ects if they do not change global variables� even if
they can cause state changes via their arguments� For
instance� the function �c� c� c is considered free from
side e�ects because it can only change state through
its argument c� It is possible to regard such terms as
passive terms� but we must capture in their types the
information that they do not change global variables�
For this purpose� we add a new type constructor �
�
where the type
� represents values of type � that do
not change global variables� The type of �c� c� c then�
would be

comm� comm���

�This intuition is formalized by the semantic models of ����
����

�Our types ��� � ��	 correspond to the passive function

We extend the type syntax of our language with
�
� and de�ne the passive types �	

� 		� � j var��� j comm j �� � �� j �� � �� j
�
� 		� � j �� � �� j � � � j
�

We formalize the above intuitions in SCIR� whose
type rules are shown in Figure �� This system is
similar to the one presented in ����� but extended with
�
�� Typing judgements are of the form � j � �M 	 ��
where M is a term and � is its type� The typing
context is partitioned into the passive zone �� which
contains passive free identi�ers� and the active zone
�� which may contain any free identi�er�
The Passi�cation rule says that all free identi�ers in

a passively�typed term are passive� Activation lets us
ignore the fact that x is a passive free identi�er� which
is necessary for abstracting x with � I � Weakening
permits free identi�ers to be added to the context�
Identi�er sharing is achieved via Contraction� which
allows sharing of two passive free identi�ers�
The rule �I allows unrestricted identi�er sharing

between the components of the pair� For � E
the zones ����������� must be disjoint to prevent
interference between distinct identi�ers� but passive
free identi�ers can occur in both the operator and
the operand� as a consequence of Contraction� Any
term with no active free identi�ers may be explicitly
promoted to a passive type using Promotion� The
Dereliction rule is needed for applying the elimination
rules to a promoted term�
It is worth noting that in SCIR� the type A�B �

C is not isomorphic to A� B � C� As a result� the
currying transformation is not valid in SCIR	 if N
and L interfere� then the application
MhN�Li� may
be typable even when
curry
M�NL� is not��

Many Algol constructs can be de�ned as constants
in this type system	

	�� 	 var���� � � comm

get� 	 var���� �
if� 	 bool� � � � � �
rec� 	

� � ��� �
do��� 	

var���� comm�� �
new��� 	
var���� comm�� comm

� 	 comm� comm� comm

skip 	 comm

To illustrate SCIR� we explain how to derive a
typing for the map procedure from Figure �� It is

types � �p �� in Reynolds
s presentation ����� Adding a
generic ��
 constructor is a useful notational convenience�

�The type system presented in ���� includes a tensor product

constructor �� such that A � B � C is isomorphic to A �

B � C� We do not discuss the tensor product here due to
space constraints� but see ����

Axiom
j x� � � x� �

� j �� x� � �M ��
Passi	cation

�� x� � j � �M ��

�� x� � j � �M � ��

Activation
� j �� x� � �M � ��

� j � �M � �
Weakening

�� �� j �� �� �M � �

�� x� �� x�� � j � �M � ��

Contraction
�� x� � j � �M
x�x��� ��

� j � �M � �� � j � � N � ��
�I

� j � � hM�Ni� �� � ��

� j � �M � �� � ��
�Ei �i � ��
�

� j � � �iM � �i

� j �� x� �� �M � ��
� I

� j � � �x� ���M � �� � ��

�� j �� �M � �� � �� �� j �� � N � ��
� E

��� �� j ��� �� �MN � ��

� j �M � �
Promotion

� j � promote M � ��

� j � �M � ��
Dereliction

� j � � derelict M � �

Figure �	 Type rules for SCIR

easy to translate map into SCIR syntax� treating the
array next as a function of type int� var�int�	

map � rec
promote
�map� �p� �i�
if
i � �� then skip

else p i� map p get
next
i����

Even though the type of next is not passive� next is
a passive free identi�er	

i	 int j next	 int� var�int� � get
next
i��	 int
Pass�

i	 int� next	 int� var�int� j � get
next
i��	 int

The rest of the derivation is straightforward� Pro�
motion can be applied because next is the only free
identi�er of the function� and it is passive�

� Type Inference

In this section� we de�ne the problem of type infer�
ence for SCIR with implicit coercions and let�based
polymorphism� The typing rules presented here
form the speci�cation of the inference algorithm of
Section �� In Section ���� we present a sound
and complete inference system where only derelict is
implicit� We allow promote to be made implicit
in Section ��� and then discuss polymorphism in
Section ����

��� Implicit Dereliction

The input to the type inference algorithm will be a
preterm in which the type declarations of lambda�
bound identi�ers and derelict operations are omitted�
The algorithm succeeds if there is some way to �ll

in the missing information to obtain a well�typed
SCIR term� It will produce a principal typing which
represents all possible ways that the information can
be �lled in�
The context�free grammar for preterms is as fol�

lows	

e 		� c j x j �x�e j e� e� j promote e

For clarity� we omit product types from our discus�
sion� since they are not immediately relevant to the
issue of implicit promotion and dereliction� Adding
products is straightforward� as shown in ����
We must extend the type syntax presented in the

last section with type variables� In addition� we
restrict our attention to standard types� where the �
�
constructor may be applied at most once to any type
term� There is no loss of expressiveness� since for any
passive type �� we can show that
� �� � ���� ����
Then� since
� is a passive type�
� ��

�� The syntax
of standard types is	�

� 		�
n�
� 		� � j var��� j comm j �� � �� j �
n 		� � j � j i

The types � range over types without an outermost
�
� constructor� and type variables � range over �
types� Standard types � may or may not contain an
outermost �
�� We cover both cases uniformly in the
type syntax by using the notation
n� where n � f�� �g
is an annotation� The type
�� denotes
�� while
��

�Many types expressible in this syntax are not practically
useful� such as ��var���� In practice� we use a more restricted
syntax that is described in Section ���� These restrictions do
not a�ect the type inference issues in any essential manner�

p��n�� � �n � � � p����
p��� � true
p�comm� � false
p�var
��� � false
p��� � ��� � p����

Figure �	 The de�nition of p

denotes �� Annotation variables i stand for the � and
� annotations of �
��
The subset of passive types � is de�ned via

� 		�
�� j
�
� � �� j
��

We introduce a predicate p
�� that is true i� � is
passive� The de�nition of p
other than for type
variables� is given in Figure �� To determine the
passivity of types which contain type and annotation
variables� we require kind assignment that maps type
variables to the kinds �passive� and �general�� and
maps annotation variables to � or �� Then p
�� holds
under a kind assignment K i� K maps � to the kind
�passive�� and p

i�� holds i� K maps i to � or p
��
holds�
However� an SCIR term can typecheck under

di�erent kind assignments� Consider the preterm
promote
f x�� where the standard types for f and
x should be of the form
i

j��
k	� and
l�� For the
term to typecheck� both free identi�ers f and x must
be used passively� so either the types of f and x are
both passive
so
i

j��
k	� and
l� are passive�� or

f x� has a passive type
i�e��
k	 is passive��
Our system uses kind constraints to represent the

class of all kind assignments under which a term is
typable� The constraints are boolean predicates given
by the following syntax	

C 		� true j false j p
�� j p
�� j n� � n� j
C� � C� j C� � C�

A constraint is satis
able if there is some kind
assignment under which it can be simpli�ed to true�
Two constraints C� and C� are equal if for all type
substitutions
�

C��	

C��� We feel free to write
n � � for n � � and n � � for � � n�
Returning to the above example� the kind con�

straint under which promote
f x� typechecks in
SCIR is
p

i

j� �
k	�� � p

l��� � p

k	�� which
can be simpli�ed to
i � � � p

l��� � p

k	��
Note that if we typecheck a term from the bottom

up� we cannot tell that this constraint is necessary
until the promote operator is discovered� This sug�
gests that we must associate kind constraints with
free identi�ers of a term as well as the term itself�

To present the type inference issues abstractly� we
devise another system of rules� The judgements in
our new system� called inference judgements� are of
the form

fxi	 �i �Pi�Ci�gi � e	 � �G�

With each free identi�er xi is associated a passi
ca�
tion constraint Pi and a contraction constraint Ci�
The constraint G is called the global constraint� We
also refer to these as the P�constraint� C�constraint�
and G�constraint respectively�

The P�constraint Pi of a free identi�er xi indicates
the conditions under which xi can be regarded as
passive� i�e�� if all occurrences of xi are in some passive
subterm�

The constraint Ci indicates the condition under
which all occurrences of the free identi�er xi can
be contracted�
Recall that in a well�typed term

MN�� all free identi�ers common to M and N
should be passive� so that Contraction can be applied
in SCIR�� So� we would expect to have Pi
 Ci as
an invariant�

Finally� the G�constraint contains conditions aris�
ing from promotions� implicit derelictions� and C�
constraints of bound variables�

A judgement A � e	 � �G� can be read as �The
term e has type � under the typing context A� as long
as the G�constraint and all C�constraints in A hold�
Further� all free identi�ers x whose P�constraints
in A hold are passive free identi�ers�� Formally�
the semantics of inference judgements is de�ned as
follows	

De�nition � �� A judgement � j� � e	 � is implic�
itly derivable if there is a derivable SCIR term
� j� � M 	 � such that e is obtained by erasing
type declarations and derelict from M �

�� A judgement � j� � e	 ��

� is an instance of an
inference judgement fxi	 �i �Pi�Ci�gi � e	 �� �G�
i� there is a substitution
 for the type variables
in the latter such that

a� the judgement

fxi	 �igi�fzj 	 �jgj � e	 ���
is the same as ��� � e	 ��

� for some fzj 	 �jgj

which represent weakening��

b�

G� and

Ci� are true for all xi� and

c� the constraint

Pi� is true for all xi	

�i�
in ��

�� An inference judgement is valid if all its ground
instances
instances with no type variables� are
implicitly derivable in SCIR�

A type system for deriving valid inference judge�
ments is shown in Figure �� We use the following no�
tations for typing contexts when A � fxi	 �i �Pi�Ci�gi
and A� � fxi	 �i �P

�

i �C
�

i�gi	

A � A� � fxi	 �i �Pi � P �

i �Pi � P �

i �gi
A � p
�� � fxi	 �i �Pi � p
���Ci � p
���gi
A�true� � fxi	 �i �true� true�gi
AjTA � fxi	 �igi
P
A� �

V
i Pi

The Axiom rule says that the term x has type

m� in a context which assigns type
n� to the
identi�er x� provided m � n
which represents the
possibility of implicitly derelicting the term�� Also�
the P�constraint of x indicates that x is a passive free
identi�er if
n� is a passive type� The C�constraint is
trivially true because x only appears once in the term
and does not need to be contracted�
In an SCIR derivation for an abstraction term�

any necessary contractions for x must have occurred
before the binding of x in � I � Thus� when x
becomes bound in the� I rule of the implicit system�
its C�constraint cannot be further weakened and must
be added to the G�constraint� The second rule � I �

handles the case where x does not occur in e�
We need not consider the possibility of dereliction

in the rules � I and � I �� because of the following
property	

Lemma � In any SCIR derivation� dereliction steps
must occur after an Axiom� Promotion� �Ei or � E
step� followed by zero or more structural steps
Weak�
ening� Contraction� Passi�cation� or Activation��

The most complex rule is � E� A and A� should
contain the free identi�ers that are common to e� and
e�� and they should assign the same types to those
identi�ers� The P and C�constraints of the identi�ers
may di�er� however� B� and B� contain identi�ers
which appear only in e� or e�� respectively�
If the function e� has a passive call type� then

e� e�� also has a passive type
before considering
implicit dereliction�� and the free identi�ers are all
passive� Thus� all P and C�constraints in the typ�
ing context are weakened with the disjunct p

n���
Further� all free identi�ers shared between e� and e�
must be passive so they can be contracted� Hence
the C�constraint of a shared identi�er should be the
same as its P�constraint� Finally� the term may be
implicitly derelicted� so its type is
m�� with m � n�
The Promotion rule ensures that all free identi�ers

of e are passive by adding all P�constraints in the con�
text to the G�constraint� Then� since G�P
A� must
hold for promote e to be well�typed� the P�constraints

and C�constraints of all free identi�ers must be true�
There are no constraints on the annotation variable
m due to the possibility of an implicit dereliction�
Examples of derivable and valid inference judge�

ments are	

f 	
i

j��
k	� �i � � � p

k	�� true��
x	
l� �p

l�� � p

k	�� true�
� f x	
m	 �m � k � j � l�

f 	
i

j��
k	� �true� true��
x	
l� �true� true�
� promote
f x�	
n	
�

i � � � p

l��� � p

k	�� �
j � l��

The latter typing is derivable from the former by
Promotion� The additional conjunct j � l in the G�
constraints of these judgements� which was not men�
tioned in the previous discussion of promote
f x��
arises from the possibility of implicitly derelicting x
before f is applied�
The requisite properties of the implicit dereliction

system are as follows	

Theorem � �Soundness� All derivable inference
judgements are valid�

Theorem � �Completeness�
Every judgement implicitly derivable in SCIR is an
instance of a derivable inference judgement�

��� Implicit Promotion

In this section� we consider the issues of implicit pro�
motion� It is possible to make the promote operator
implicit simply by combining the Promotion rule of
Figure � with each of the other four rules� much as
we merged Dereliction with the other SCIR rules�
However� we believe that promote should not be left
completely implicit in the language for two reasons�
First� promote serves as a valuable program an�

notation� It documents the important fact that its
argument is free from side e�ects� and can thus aid
programmers in reasoning about interference�
On
the other hand� the derelict operator does not provide
any useful information about its argument��
Secondly� implicit promotion may lead to exces�

sively large constraints in typings� As can be seen
in Figure �� the global constraint of a term promote e
must �ensure� that all free identi�ers of e are passive�
If implicit promotion is possible at every step of a
derivation� then the size of the global constraint may
grow very quickly�
A more practical solution is to allow promote to be

left implicit only in conjunction with the constants

Axiom
x� �n�
p��n��� true� � x� �m�
m � n�

A� x� ��
P �C� � e� ��
G�
� I

A � �x�e� ����� � ���
G � C�

A � e� ��
G�
� I � �x not in A�

A � �x�e� ����� � ���
G�

A� B� � e�� �
���� ��n��
G�� A�� B� � e�� �

�
G��
� E

�A �A�� � p��n��� B� � p��n��� B� � p��n�� � e� e�� �
m�
G� �G� �m � n�

�AjTA � A�jTA� dom�A� � dom�B�� � dom�B�� � 	�

A � e� ���
G�
Promotion

A
true� � promote e� �m�
G � P �A��

Figure �	 System of rules for type inference

A � e� �n��k���k��
G�
rec

A
true� � rec e� �m�
G �m � k � �n � � � P �A���

A � e� �n���var
�����comm�
G�
do
��

A
true� � do
�� e� ���
G � �n � � � P �A���

Figure �	 Additional type rules for implicit promotion

rec and do� These are two of the most commonly
used operators in programs� but since their argu�
ments must have promoted function types� explicit
promotion is redundant� Permitting one to write
do��� e instead of do���
promote e� and rec e instead
of rec
promote e� eliminates many promote operators
in typical programs�
We extend the type system of Figure � with the

two additional rules shown in Figure �� These
rules combine Promotion with rules for applying rec

and do���� The conjunct
n � � � P
A�� of the
G�constraint is due to implicit promotion	 if e does
not already have a promoted function type
i�e�� if
n � ��� then e is promoted implicitly by constraining
its free identi�ers to all be passive�
By changing the de�nition of implicitly deriv�

able from De�nition � to account for the erasure
of promote from the terms do���
promote M� and
rec
promote M�� the soundness and completeness
theorems in Section ��� can be carried over to this
extended system�

Theorem � �Soundness and Completeness�
All derivable inference judgements are valid and
every judgement implicitly derivable in SCIR is an
instance of a derivable inference judgement�

An inference judgement for a term e has instances

only if the G and C�constraints are satis�able�
Otherwise� there does not exist any SCIR term
corresponding to e� and e should be considered
untypable� The satis�ability of kind constraints� and
hence typability� can be decided in polynomial time
for our system	

Theorem � �Satis�ability� Consider constraints
generated by the type system with implicit dereliction
and implicit promotions for do��� and rec� There
exists an algorithm which checks the satis�ability of
the constraint� in time polynomial in the size of the
constraint�

As an example of the new rec rule� consider the last
step in the derivation for the term rec
f�	

f 	
n

l��
l�� �n � � � p

l��� true�
� f 	
m

l��
l�� �m � n�

f 	
n

l��
l�� �true� true�
� rec
f�	
k� �m � n � k � l �

m � � �
n � � � p

l�����

��� Polymorphism

In this section� we discuss the addition of Hindley�
Milner style polymorphism to SCIR� Languages
which support such polymorphism� like ML� provide
a let construct of the form let x � e� in e�� Type
inference for let is usually handled with either quan�
ti�ed types or substitution� Unfortunately� neither
approach is directly applicable to SCIR�
In Damas and Milner�s inference algorith ���� e� is

typechecked under a context that assigns a quanti�ed
type ��� � to x� But in SCIR� the type variable to be
quanti�ed over might occur in the constraints� This
implies that constraints should be incorporated into
type schemes� as in ��� p
���p
	�
 �� The situation

A � ��x�� e�

�� he�� � � � � e�i� �
G�
let� �x is free in e��

A � let x � e� in e�� �
G�
�e�

� is e with each occurrence i of x replaced by �ix�

A � ��x� e�� e�� �
G�
let� �x not free in e��

A � let x � e� in e�� �
G�

Figure �	 Additional type rules for let�based poly�
morphism

is complicated by the fact that the constraint may
refer to both bound
�� and free
	� type variables�
More study is needed to understand how this method
can be applied to SCIR�

The substitution�based approach to type infer�
ence ���� treats the let term as e��e��x� instead�
But this would not be sound in SCIR� From the
desugared form of the let term�
�x� e��e�� it is clear
that �x� e� should not interfere with e�� However�
this condition cannot be enforced by typechecking
e��e��x�� so let x � e� in e� cannot be considered
equivalent to e��e��x��

We suggest a third approach as a tentative solution�
The main idea is to desugar a let term into an
application to ensure non�interference between e� and
e�� But the traditional desugared form
�x� e��e�
does not permit polymorphic uses of x within e��
Instead� replace all n occurrences of x in e� by terms
��x

�� ��x
�� � � � � �nx

�� and call the resulting term e�

�
�

Then� typechecking let x � e� in e� is equivalent to
typechecking

�x�� e�

�
�he�� e�� � � � � e�i

Each distinct �copy� of e�� and hence each term
�ix

�� can be assigned a di�erent typing� e�ectively
simulating polymorphism� Furthermore� by using the
cross product type to form n�tuples� the n �copies�
of e� are not considered to interfere with one another�
More precisely� we add the type rules shown in

Figure � to the rules of Figures � and �� The rule let�
is needed to typecheck e� and to control interference
between e� and e� when x is not free in e��

For example� let id � �x� x in hid �� id
y	���i can
be typechecked by deriving the following judgement	�

y	
ivar�int� �i � �� true�
�
�x�� h
�� x

�� ��
�� x
��
y	���i�h�x� x� �x� xi

	

j int�� comm �true�

�As mentioned in Section ���� the inference system can
readily be extended with product types�

�We will write � instead ��� to simplify the presentation�

� Inference Algorithm

The type rules described in Section � essentially
form a �logic program� for type inference� They
are syntax�directed and are closed under type sub�
stitution� Much of the type inference algorithm is
derived directly from these rules� However� naively
implementing the rule let� would be very ine�cient�
because of the need to perform term substitution on
e� and to typecheck e� multiple times in the tuple
term� Instead� we adopt the type inference method
of ���� ��������

Our type inference algorithm T takes two argu�
ments	 a preterm e and an environment mapping
identi�ers to typings� The algorithm returns a pair
consisting of a typing judgement for e and another
environment�

To typecheck let x � e�in e�� we �rst typecheck e�
just once� and then typecheck e� in an environment
that associates x with the typing of e�� So� the envi�
ronment argument of T stores the principal typing
of e�� and each occurrence of x in e� will receive
an instantiation of that typing� with all type and
annotation variables fresh� This eliminates the need
to repeatedly typecheck e�� as well as the need to
substitute x with �ix in e��

To simulate the e�ect of let�� though� we still need
to infer a typing and constraints for he�� � � � � e�i�
without actually checking e�� The environment
returned by T is used for this purpose� If T
e� E� �
hA � e	 � �G�� Ii for some environmentE and preterm
e� then I is an environment that associates the typing
ofm�tuple he�� � � � � e�i with the let�bound identi�er x�
where m is the number of occurrences of x in e�

An environment mapping x to a fresh copy of e��s
typing is returned
as the second argument� from an
invocation T
x�E�� When two terms which share
a let�bound identi�er x are combined� as for the
� E rule� the instantiations of x are also combined�
according to the cross product rules of ����

Thus� when the let body e� is typechecked in
T
e�� E� � hA � e�	 � �G�� Ii� the environment I will
associate x with a typing that represents the typing
of the n�tuple� Then� application of the � E rule
yields the typing for let�

The inference algorithm T is sound and complete
with respect to the type rules of Section �	 if T
succeeds for a preterm e� then the typing returned
by T is derivable in the inference system� and is
a principal typing of e� Further� if a preterm e is
typable in the inference system� then the algorithm
succeeds and returns a principal typing for e� The
reader is referred to ���� for further details� including
proofs of correctness�

5

10

15

20

0 1 2 3 4 5 6 7

8

11

14

1 1 2 1

Number of programs

Size of index

Table �	 Distribution of program indices

��� Practical Considerations

Implicit promotion and dereliction may cause the
types in our system to become quite complicated� In
this section we discuss preliminary experience with
our prototype of a SCIR typechecker� and suggest
some techniques to reduce the size of the constraints�
We implemented a typechecker for SCIR based on

the inference algorithm described in this section� and
tested it with the �� programs from ��� Appendix B��
As a rough measure of the complexity of the types
inferred� we examined the index

number of atomic formulas in constraints

length of type

This index was in the range ��� for all examples�
with most of the indices falling below �� So� we
feel the complexity of types inferred by our system
is reasonable� Table � shows a breakdown of the
number of programs which fall within each index
range�
In general� terms with polymorphic types have

larger constraints� while constraints are signi�cantly
shorter when some ground types can be inferred�
Longer terms also tend to yield longer constraints�
due to more possibilities of dereliction as well as
more opportunities for passi�cation of free identi�ers�
We also found that our implicit promotions do not
usually add to the size of the constraints� since most
Algol�style programs do not access free identi�ers
from within recursive procedures or blocks�
We introduce some simpli�cations which can help

to further reduce the size and complexity of types and
constraints� The simpli�cations are suggested by the
the following isomorphisms ���� ���	

� �� �

�� � ��� ��
���
��

Thus� types of the form
� and

�� � ��� are
redundant and can be eliminated
by setting their

annotation variables to ��� Also� types of the form

var��� and
comm serve no purpose because there are
no values of such types� other than unde�ned values�
We can eliminate these types as well�
The only useful
 constructors are those applied

to � types and type variables� We use this fact to
formulate the following abbreviated notation	

� �n �� �
n
� � ���
�n �
n�

With these simpli�cations and notations� we can
show the following typings	

f 	 int� comm�i int� comm �true� true��
y	 var�int� �true� true�
� let twice � �f� �x� f
f x�

in ��
twice f h�� y 	� �i� 	 int �i � ��

next	 int� var�int� �false� true��
free	 var�int� �false� true�
� reclaim 	 int� comm �true�

next	 int� var�int� �false� false��
free	 var�int� �false� true�
�
map reclaim�	 int� comm �true�

The �rst term illustrates cross products and poly�
morphic terms� The G�constraint i � � represents
the only possible way that the type of f can be
passive� and the only way that f can be a passive
free identi�er�
The next term is the reclaim function of Fig�

ure �� The free identi�ers next and free cannot be
passi�ed� The last example is the application
map
reclaim� from the Introduction� The C�constraint of
next is false� so next is not a passive free identi�er�
and the term is not typable�

� Conclusion

This paper extends the previous research on type
inference for SCIR�based languages� We have shown
how the coercion operators promote and derelict may
be left implicit� and introduced a technique for adding
let�based polymorphism to the language� The com�
plexity of typings produced by our system remains
within practical limits�
Possible areas for future work include investigating

how type quanti�cation may be introduced into the
system� It would also be interesting to study exten�
sions of SCI to include references� as in ILC ���� ����

Acknowledgements We would like to thank Uday
Reddy for o�ering many valuable suggestions�

References

�� R� Bird and P� Wadler� Introduction to Functional
Programming� Prentice�Hall International� London�
�����

� K� Chen and M� Odersky� A type system for a
lambda calculus with assignments� In M� Hagiya
and J� C� Mitchell� editors� Theoretical Aspects of
Computer Software� volume ��� of LNCS� pages
�������� Springer�Verlag� �����

�� L� Damas and R� Milner� Principal type�schemes for
functional programs� In ACM Symp� on Princ� of
Program� Lang�� pages
���
�
� ���
�

�� M� Dawson and P� Taylor� editors� Hypatia Electronic
Library� Queen Mary and West	eld College� URL
��hypatia�dcs�qmw�ac�uk�

�� J� Eifrig� S� Smith� and V� Trifonov� Sound polymor�
phic type inference for objects� In Object Oriented
Prog� Syst�� Lang� and Applications� pages ��������
ACM� �����

�� Y��C� Fuh and P� Mishra� Type inference with
subtypes� Theoretical Comput� Sci�� �����������
�����

�� H� Huang and U� S� Reddy� Type reconstruction
for SCI� In D� N� Turner� editor� Functional Pro�
gramming� Glasgow ����� Electronic Workshops in
Computing� Springer�Verlag� �����

�� M� P� Jones� Quali�ed types� Theory and Practice�
Cambridge University Press� Cambridge� England�
�����

�� J� Launchbury and S� L� Peyton Jones� State in
Haskell� J� Lisp and Symbolic Comput�� �����
���
���� �����

��� J�M� Lucassen and D�K� Gi�ord� Polymorphic e�ect
systems� In ACM Symp� on Princ� of Program�
Lang�� pages ������ �����

��� J� C� Mitchell� Type inference with simple subtypes�
J� Functional Program�� �����
���
��� July �����

�
� J� C� Mitchell� Foundations of Programming Lan�
guages� MIT Press� �����

��� P� W� O�Hearn� A� J� Power� M� Takeyama� and R� D�
Tennent� Syntactic control of interference revisited�
In S� Brookes� M� Main� A� Melton� and M� Mislove�
editors� Mathematical Foundations of Programming
Semanatics� Eleventh Annual Conference� volume �
of Electronic Notes in Theor� Comput� Sci� Elsevier�
����� �Reprinted as Chapter �� of
�����

��� P� W� O�Hearn and R� D� Tennent� Algol�like Lan�
guages �Two volumes	� Birkh�auser� Boston� �����

��� U� S� Reddy� Global state considered unnecessary�
An introduction to object�based semantics� J� Lisp
and Symbolic Computation� ������� ����� �Reprinted
as Chapter �� of
�����

��� U� S� Reddy� Objects and classes in Algol�like lan�
guages� In Fifth Intern� Workshop on Foundations
of Object�oriented Languages� ACM� Jan �����

��� J� C� Reynolds� Syntactic control of interference� In
ACM Symp� on Princ� of Program� Lang�� pages ���
��� ACM� ����� �Reprinted as Chapter �� of
�����

��� J� C� Reynolds� The essence of Algol� In J� W�
de Bakker and J� C� van Vliet� editors� Algorithmic
Languages� pages ������
� North�Holland� �����
�Reprinted as Chapter � of
�����

��� V� Swarup� U� S� Reddy� and E� Ireland� Assignments
for applicative languages� In R� J� M� Hughes� editor�
Conf� on Functional Program� Lang� and Comput�
Arch�� volume �
� of LNCS� pages ��
�
��� Springer�
Verlag� �����

�� V� Swarup� U� S� Reddy� and E� Ireland� Assignments
for applicative languages� In Algol�like Languages

���� chapter �� pages
���
�
�

�� P� Wadler� Is there a use for linear logic� In Proc�
Symp� on Partial Evaluation and Semantics�Based
Program Manipulation� pages
���
��� ACM� �����
�SIGPLAN Notices� Sep� ������

� P� Wadler and S� Blott� How to make ad hoc
polymorphism less ad hoc� In ACM Symp� on Princ�
of Program� Lang� ACM� January �����

�� H� Yang and H� Huang� Type reconstruction for
syntactic control of interference� part
� Technical
report� University of Illinois� To appear�

�� H� Yang and U� S� Reddy� Imperative lambda
calculus revisited� Electronic manuscript�
��� Aug
�����

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

