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Abstract

Syntactic Control of Interference (SCI) [17] has long
been studied as a basis for interference-free program-
ming, with cleaner reasoning properties and seman-
tics than traditional imperative languages. This paper
improves upon Huang and Reddy’s type inference
system [7] for SCI-based languages in two significant
ways. First, we eliminate the need for explicit
coercion operators in terms.  Second, we consider
adding let-bound polymorphism, which appears to be
nontrivial in the presence of interference control.
SCI can be adapted to a wide variety of languages,
and our techniques should be applicable to any such
language with SCI-based interference control.

1 Introduction

One of the main challenges in reasoning about
imperative programs is dealing with interference,
which occurs when the execution of one program
phrase affects the outcome of another. Interference
can appear in many forms, such as aliasing, which
invalidate traditional reasoning techniques. @ Even
worse, it can be quite difficult for both users and
machines to detect interference.

The example program in Figure 1, adopted
from [17], illustrates some of the problems. The
procedure map applies its argument p to each ele-
ment of a linked list of integers, represented by i.
Procedure reclaim inserts a node ¢ into a list of free
nodes, represented by the global variable free of type
var[int]. For simplicity, we represent lists using arrays
of integer variables: next holds the indices of the next
nodes, and another array would contain the integer
values of the list.

The call (map reclaim data) may appear to be a
reasonable way to delete all elements of a list data.
Unfortunately, reclaim modifies next (i) to be the
head of the old free list, so the second node that is
reclaimed actually belongs to the free list, not data!
To ensure correctness, the arguments to a function
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map = Ap:int — comm. Ai:int.
if (¢ # 0) then
P
map p next()

reclaim = M\i:int.
next(z) := free;
free := i

Figure 1: Example of procedures which interfere

should not interfere with the function itself, but it is
not always obvious when this condition holds. In this
case, the execution of reclaim adversely affects map
via the shared array next.

Language designers have tried to address inter-
ference using a variety of approaches. In 1978,
Reynolds proposed Syntactic Control of Interference,
or SCI [17], which syntactically restricts a language
to prevent undesired interference and make it clear
where interference occurs. O’Hearn et al. later
developed SCIR [13], a type system and semantics
for SCI. But SCI also needs practical type infer-
ence algorithms, which have long been available for
functional languages with state (but in the absence
of interference control), such as ML and Haskell.

Huang and Reddy first studied the problem of type
inference for SCIR [7]. It can be shown that SCIR
does not have principal typings; there may exist many
possible type derivations for a term because of the
interaction between the Passification and Contraction
rules. Huang and Reddy were able to infer principal
typings in their SCIR ik system by extending SCIR
judgements with kind constraints that specify the
conditions under which a term is well-typed.

Our work improves upon their system in
two important ways. First, the promote and
derelict operators are explicit in the term syntax
of SCIRk, but they were implicit in Reynolds’s
original proposal. Intuitively, these operations do
not affect any change of meaning; i.e., the implicit



language is coherent [15]. In this paper, we devise
type inference algorithms that allow many of these
coercion operators to be left implicit.

Second, there is no provision for polymorphism in
SCIR k. Traditional type inference techniques for
let terms, such as using type quantification [3] or
substitution [12], do not seem applicable to SCIR.
We suggest a different approach which supports poly-
morphism in conjunction with interference control.

Passive types of SCI form what are called reflective
type classes in [16]. Various other instances of
reflective type classes that are useful in imperative
programming are mentioned there. Applicative types
in imperative lambda calculus [20] and typed Avar [2]
also form reflective type classes. The constraint-
based techniques we present for passive types are
applicable to all such reflective type classes.

The next section of this paper reviews the prin-
ciples of SCI and presents the SCIR. type system.
Section 3 introduces our extended type system with
implicit coercions and let-based polymorphism. In
Section 4, we outline an inference algorithm based on
this type system. Concluding remarks are given in
Section 5.

Proofs are omitted from this paper due to space
limitations. The full paper will be available as [23].

1.1 Related Work

Constraint-based type inference systems have been
designed for many languages, including ones that sup-
port subtyping [6, 11], objects [5], overloading [8, 22],
and linear types [21]. The inference issues in [21] are
especially close to ours, and we received considerable
inspiration from this work. One novel aspect of our
system which does not arise in these other works
is the need to associate constraints with each free
identifier of a term, instead of requiring just a single
constraint per typing judgement.

Other lines of research also address issues of in-
terference. Effect systems [10] use types to specify,
but not control, the side effects that may occur in
program phrases.

Research on extending functional languages with
state includes [9, 20, 2]. In these systems, the state
is single-threaded and references cannot escape the
thread, but interference may still occur within a
thread.

Our work incorporates some ideas from the type
inference algorithm for ILCR,, an imperative lambda
calculus [24]. In particular, ILCR supports implicit
coercion of terms between state-dependent and state-
independent types, which corresponds closely to the
promote and derelict operators of SCIR.

2 The SCIR Type System

We introduce the concepts of SCI in the context of an
Algol-like functional language with state and call-by-
name evaluation [18]. There are two kinds of types.
Data types § represent storable values such as int and
bool. Phrase types 0, given by the following abstract
syntax, are the types of arbitrary terms:

0:::6|var[5] | comm | 01 X02 |01 —)02

Types § (sometimes written exp[d]) are the types
of state-dependent expressions which yield §-typed
values. var[d] is the type of storage variables that hold
d-typed values, and comm is the type of commands
that modify the state. Type constructors x and —
are as in typed lambda calculus.

Some typical terms of Algol-like languages are
given by the following syntax, where ¢ ranges over
a set of constants and ¢ ranges over {1,2}:

M == c|lz|Ae. M | My My | (My, M) | m;M |
if My then M, else Ms | rec M |
do[d]Az. M | skip | My := M; | get(M) |
M;y; M, | new[d]Az. M

The functional side of the language is A-calculus with
pairs, conditionals and the recursive Y-combinator.
The term do[é]Az. M allows computations which
manipulate only local state to be embedded in a
0-typed term: the command M is executed with z
bound to a new variable of type var[d]. The result
of the term is the d-typed value stored in z upon
completion of M. In the recommended usage, M
should not cause any “side effects,” or changes to
non-local variables other than z.

The basic commands include skip, assignments and
variable dereferencing. The “;” operator sequences
commands. Finally, new[d]A\z. M executes the com-
mand M after binding = to a newly allocated variable
of type var[d].

2.1 SCIR

The basic approach of SCI is to focus on the free
identifiers of terms. As a first approximation, we pre-
sume that two terms interfere if they have common
free identifiers. For example, the terms z := get(z)+1
and y := get(z) interfere because z is free in both
terms, and the assignment to  can obviously affect
the result of the assignment to y.

Terms without common free identifiers can be said
to be noninterfering only if distinct identifiers do
not interfere. In our example language, the only
way to bind identifiers is via new, do and function



applications. new and do always create fresh storage
locations, which cannot be aliased. For applications
M N, SCI requires that M and N do not interfere. If
they did interfere, then the lambda-bound identifier
of the function M could be an alias to other free
identifiers of M. For example, in the term

(Az.z :=get(z) + 1; y :=get(y) + 1) (v)

the function and the argument interfere (they both
have the free identifier y), and z and y are aliases
within the function body.

This basic definition of interference is too restric-
tive. It disallows terms such as (plus get(z))(get(z))
because z occurs free in both the function and
argument. But intuitively, since z is never assigned
to, the subterms cannot interfere with each other.

To allow such terms, Reynolds designates a subset
of the types as passive types. Terms with passive
types are guaranteed not to have any side effects and
cannot interfere with other passive terms.! In our
language, the types ¢ are passive, and a product type
0, x 05 is passive iff ; and 6, are both passive types.
A function type 6; — 65 is passive iff 0y is passive.
The argument type is inconsequential, because as
long as the body has a passive type, it cannot “use”
any arguments of non-passive type.

A free identifier z of a term M is a passive free
identifier if it always occurs in some passively-typed
subterm of M, regardless of whether or not x has
a passive type. For example, in the addition term
above, the type of z, viz. var[int], is not passive. But
x is a passive free identifier, because both occurrences
of z are in subterms of passive type (namely get(z),
which has type int).

We can now relax the original definition of interfer-
ence, and say that two terms interfere if their shared
identifiers are not passive free identifiers. Therefore,
the addition term above is considered well-typed.

Functions are often regarded as free from side
effects if they do not change global variables, even if
they can cause state changes via their arguments. For
instance, the function Ac.c; ¢ is considered free from
side effects because it can only change state through
its argument c. It is possible to regard such terms as
passive terms, but we must capture in their types the
information that they do not change global variables.
For this purpose, we add a new type constructor “!”
where the type !0 represents values of type € that do
not change global variables. The type of Ac. ¢; ¢ then,
would be !(comm — comm).?

1 This intuition is formalized by the semantic models of [15,
13].
20ur types !(§ — ') correspond to the passive function

We extend the type syntax of our language with
“!” and define the passive types ¢:

0 =
¢

We formalize the above intuitions in SCIR, whose
type rules are shown in Figure 2. This system is
similar to the one presented in [13], but extended with
“I”. Typing judgements are of the form IT | " - M: 6,
where M is a term and 0 is its type. The typing
context is partitioned into the passive zone II, which
contains passive free identifiers, and the active zone
I', which may contain any free identifier.

The Passification rule says that all free identifiers in
a passively-typed term are passive. Activation lets us
ignore the fact that x is a passive free identifier, which
is necessary for abstracting x with — I. Weakening
permits free identifiers to be added to the context.
Identifier sharing is achieved via Contraction, which
allows sharing of two passive free identifiers.

The rule xI allows unrestricted identifier sharing
between the components of the pair. For — FE
the zones II;,II5,I'1, s must be disjoint to prevent
interference between distinct identifiers, but passive
free identifiers can occur in both the operator and
the operand, as a consequence of Contraction. Any
term with no active free identifiers may be explicitly
promoted to a passive type using Promotion. The
Dereliction rule is needed for applying the elimination
rules to a promoted term.

It is worth noting that in SCIR, the type Ax B —
C is not isomorphic to A - B — C. As a result, the
currying transformation is not valid in SCIR: if N
and L interfere, then the application (M (N, L)) may
be typable even when (curry(M)NL) is not.?

Many Algol constructs can be defined as constants
in this type system:

6|var[5]|comm|01x02|01—>02|!0
6| drx 20— 0|10

=5 var[§] x § — comm

gets var[§] — ¢

ifg : boolx 0 x60 —0

recg 0 —0)—06

do[d] !(var[d] — comm) — §
new[d] (var[d] = comm) — comm
; comm X comm — comm
skip comm

To illustrate SCIR, we explain how to derive a
typing for the map procedure from Figure 1. It is

types & —p 60" in Reynolds’s presentation [17]. Adding a
generic “!” constructor is a useful notational convenience.

3The type system presented in [13] includes a tensor product
constructor @, such that A ® B — C is isomorphic to A —
B — C. We do not discuss the tensor product here due to
space constraints, but see [7].



| z:0F z: 0

I T, z:0-M:¢
II, z:0 |- M:¢
II|THM:0
I, |0, T+ M: 6
II|I'FM:6; II|T'F N:6,
xI

Passification

Weakening

Axiom

O,z:0 | T+ M:6
O|T, z:0+ M:6'

Activation

O,z:6,z:0|TF M6

Contraction

O,z:0 | T+ M[z/2']:¢'

| TF M:6: x 0,

xE; (i =1,2)
H|F|‘(M,N):01X92 H|F|—7riM:0i
H|F,£L‘:01'_M:02 H1|F1|_M:01—)02 H2|F2|_N201
— - B
H|F")\{B01M01—)02 Hl,Hz|F1,F2'_MN:02
Io| - M:6 | T+ M:19
Promotion Dereliction

IT | + promote M:!

IT | '+ derelict M: 6

Figure 2: Type rules for SCIR

easy to translate map into SCIR syntax, treating the
array next as a function of type int — varlint]:

rec(promote (Amap. Ap. Ai.
if (¢ =0) then skip
else p i; map p get(next(7))))

map =

Even though the type of next is not passive, next is
a passive free identifier:

i:int | next: int — var[int] F get(next(z)): int

.. - - . - Pass.
i:int, next: int — var[int] | F get(next(z)):int

The rest of the derivation is straightforward. Pro-
motion can be applied because next is the only free
identifier of the function, and it is passive.

3 Type Inference

In this section, we define the problem of type infer-
ence for SCIR with implicit coercions and let-based
polymorphism. The typing rules presented here
form the specification of the inference algorithm of
Section 4. In Section 3.1, we present a sound
and complete inference system where only derelict is
implicit. We allow promote to be made implicit
in Section 3.2 and then discuss polymorphism in
Section 3.3.

3.1 Implicit Dereliction

The input to the type inference algorithm will be a
preterm in which the type declarations of lambda-
bound identifiers and derelict operations are omitted.
The algorithm succeeds if there is some way to fill

in the missing information to obtain a well-typed
SCIR term. It will produce a principal typing which
represents all possible ways that the information can
be filled in.

The context-free grammar for preterms is as fol-
lows:

e u= c|z|Az.e|eiey|promotee
For clarity, we omit product types from our discus-
sion, since they are not immediately relevant to the
issue of implicit promotion and dereliction. Adding
products is straightforward, as shown in [7].

We must extend the type syntax presented in the
last section with type variables. In addition, we
restrict our attention to standard types, where the “!”
constructor may be applied at most once to any type
term. There is no loss of expressiveness, since for any
passive type ¢, we can show that l¢p = ¢ [15, 13].
Then, since !0 is a passive type, 18 = !l§. The syntax
of standard types is:*

0 == 1"p
p u= & |var[d]| comm|b; — 6 |
nou= 0]1]i

The types p range over types without an outermost
“I” constructor, and type variables a range over p
types. Standard types § may or may not contain an
outermost “!”. We cover both cases uniformly in the
type syntax by using the notation !, where n € {0,1}
is an annotation. The type !'p denotes !p, while !°p

4Many types expressible in this syntax are not practically
useful, such as !'var[§]. In practice, we use a more restricted
syntax that is described in Section 4.1. These restrictions do
not affect the type inference issues in any essential manner.



p(""p) = (n=1Vp(p)
p(9) = true
p(comm) = false
p(var[d]) = false
p(61 —02) = p(62)

Figure 3: The definition of p

denotes p. Annotation variables ¢ stand for the 0 and
1 annotations of “!”.
The subset of passive types ¢ is defined via

¢ =

We introduce a predicate p(f) that is true iff 6 is
passive. The definition of p (other than for type
variables) is given in Figure 3. To determine the
passivity of types which contain type and annotation
variables, we require kind assignment that maps type
variables to the kinds “passive” and “general,” and
maps annotation variables to 0 or 1. Then p(«) holds
under a kind assignment K iff K maps a to the kind
“passive,” and p(!’p) holds iff K maps i to 1 or p(p)
holds.

However, an SCIR term can typecheck under
different kind assignments. Consider the preterm
promote (f z), where the standard types for f and
z should be of the form !*(Ya —!*3) and "a. For the
term to typecheck, both free identifiers f and z must
be used passively, so either the types of f and = are
both passive (so !(¥a —!*3) and "« are passive), or
(f =) has a passive type (i.e., !¥3 is passive).

Our system uses kind constraints to represent the
class of all kind assignments under which a term is
typable. The constraints are boolean predicates given
by the following syntax:

105 1°(8 = ¢) |1'p

C == true|false| p(0) | p(p) | n1 < ng |

CLACy|CLV Co

A constraint is satisfiable if there is some kind
assignment under which it can be simplified to true.
Two constraints C; and C> are equal if for all type
substitutions o, 0(C1) < o(C2). We feel free to write
n=0forn<0andn=1for1<n.

Returning to the above example, the kind con-
straint under which promote (fz) typechecks in
SCIR is (p(**(Ya —!*8)) A p(M'a)) V p('*B), which
can be simplified to (i = 1 A p(Y'@)) V p(*3).

Note that if we typecheck a term from the bottom
up, we cannot tell that this constraint is necessary
until the promote operator is discovered. This sug-
gests that we must associate kind constraints with
free identifiers of a term as well as the term itself.

To present the type inference issues abstractly, we
devise another system of rules. The judgements in
our new system, called inference judgements, are of
the form

{.’Eii 0z’ [Pi; Ci]}z' " 6:0 [G]

With each free identifier z; is associated a passifica-
tion constraint P; and a contraction constraint Cj;.
The constraint G is called the global constraint. We
also refer to these as the P-constraint, C-constraint,
and G-constraint respectively.

The P-constraint P; of a free identifier z; indicates
the conditions under which z; can be regarded as
passive; i.e., if all occurrences of x; are in some passive
subterm.

The constraint C; indicates the condition under
which all occurrences of the free identifier z; can
be contracted. (Recall that in a well-typed term
(M N), all free identifiers common to M and N
should be passive, so that Contraction can be applied
in SCIR.) So, we would expect to have P; = C; as
an invariant.

Finally, the G-constraint contains conditions aris-
ing from promotions, implicit derelictions, and C-
constraints of bound variables.

A judgement A F e:0 [G] can be read as “The
term e has type € under the typing context A, as long
as the G-constraint and all C-constraints in A hold.
Further, all free identifiers x whose P-constraints
in A hold are passive free identifiers.” Formally,
the semantics of inference judgements is defined as
follows:

Definition 1 1. A judgement II|T - e: 0 is implic-
itly derivable if there is a derivable SCIR term
II|T' + M:6 such that e is obtained by erasing
type declarations and derelict from M.

2. A judgement IT|T F e:6) is an instance of an
inference judgement {z;:0; [P;; Ci]}: F e:60' [G]
iff there is a substitution o for the type variables
in the latter such that

(a) the judgement o({z;:0;}; U{z;:6;}; - e:8)
is the same as I, T - e: 6 for some {z;:0;};
(which represent weakening),

(b) o(G) and o(C;) are true for all z;, and
(c) the constraint o(F;) is true for all z;: o(6;)

in II.

3. An inference judgement is valid if all its ground
instances (instances with no type variables) are
implicitly derivable in SCIR.



A type system for deriving valid inference judge-
ments is shown in Figure 4. We use the following no-
tations for typing contexts when A = {z;:0; [P;; C;]}:
and A" = {z;:0; [P};C}]}::

A A A’ = {.’Eii 0i [Pi A Pz',; Pi A Pil]}i
Avp(d) = {z:0: [PV p(0);CiVp6)}i
Altrue] = {z;:6; [true;true]};
P(A) = /\z P;
The Axiom rule says that the term x has type

™p in a context which assigns type !"p to the
identifier z, provided m < n (which represents the
possibility of implicitly derelicting the term). Also,
the P-constraint of z indicates that x is a passive free
identifier if !"p is a passive type. The C-constraint is
trivially true because x only appears once in the term
and does not need to be contracted.

In an SCIR derivation for an abstraction term,
any necessary contractions for x must have occurred
before the binding of z in — I. Thus, when z
becomes bound in the — I rule of the implicit system,
its C-constraint cannot be further weakened and must
be added to the G-constraint. The second rule — I
handles the case where = does not occur in e.

We need not consider the possibility of dereliction
in the rules — I and — I’, because of the following

property:

Lemma 2 In any SCIR derivation, dereliction steps
must occur after an Axiom, Promotion, XE; or — E
step, followed by zero or more structural steps (Weak-
ening, Contraction, Passification, or Activation).

The most complex rule is -+ E. A and A’ should
contain the free identifiers that are common to e; and
ez, and they should assign the same types to those
identifiers. The P and C-constraints of the identifiers
may differ, however. B; and B, contain identifiers
which appear only in e; or es, respectively.

If the function e; has a passive call type, then
(e1 e2) also has a passive type (before considering
implicit dereliction), and the free identifiers are all
passive. Thus, all P and C-constraints in the typ-
ing context are weakened with the disjunct p(!"p).
Further, all free identifiers shared between e; and e;
must be passive so they can be contracted. Hence
the C-constraint of a shared identifier should be the
same as its P-constraint. Finally, the term may be
implicitly derelicted, so its type is I"™p, with m < n.

The Promotion rule ensures that all free identifiers
of e are passive by adding all P-constraints in the con-
text to the G-constraint. Then, since G A P(.A) must
hold for promote e to be well-typed, the P-constraints

and C-constraints of all free identifiers must be true.
There are no constraints on the annotation variable
m due to the possibility of an implicit dereliction.

Examples of derivable and valid inference judge-
ments are:

f:l(Ya —=!*k8) [i = 1V p(**B); true],
z:"a [p(a) V p('*B); true]
Ffaz!mB8 m<kAj<I

f: Y (Ya —!%3) [true; true],
z: ' [true; true]
F promote (f z):!"3
[(G=1Ap( a)) Vp(*B) A (5 < 1)

The latter typing is derivable from the former by
Promotion. The additional conjunct 5 <[ in the G-
constraints of these judgements, which was not men-
tioned in the previous discussion of promote (f z),
arises from the possibility of implicitly derelicting z
before f is applied.

The requisite properties of the implicit dereliction
system are as follows:

Theorem 3 (Soundness) All derivable inference
judgements are valid.

Theorem 4 (Completeness)
Every judgement implicitly derivable in SCIR is an
instance of a derivable inference judgement.

3.2 Implicit Promotion

In this section, we consider the issues of implicit pro-
motion. It is possible to make the promote operator
implicit simply by combining the Promotion rule of
Figure 4 with each of the other four rules, much as
we merged Dereliction with the other SCIR rules.
However, we believe that promote should not be left
completely implicit in the language for two reasons.

First, promote serves as a valuable program an-
notation. It documents the important fact that its
argument is free from side effects, and can thus aid
programmers in reasoning about interference. (On
the other hand, the derelict operator does not provide
any useful information about its argument.)

Secondly, implicit promotion may lead to exces-
sively large constraints in typings. As can be seen
in Figure 4, the global constraint of a term promote e
must “ensure” that all free identifiers of e are passive.
If implicit promotion is possible at every step of a
derivation, then the size of the global constraint may
grow very quickly.

A more practical solution is to allow promote to be
left implicit only in conjunction with the constants



z:!"p

A, z:0, [P;C] +e:0: [G]
-1

Axiom

[p(!"p); true] - z:1™p [m < n]

At e:f: [G]
— I' (z not in A)

AF Az.e:1°(01 — 65) [GAC]

AF Az.e:1°(61 — 62) [G]

A, BiFe:!°(0 =1"p) [G1] A, Byt e2:8 [Ga]

— F

(ANAYVp("p), BiVp("p), B Vp(I"p) Ferex:!"p [Gi A G2 Am < n
(Alpa = A'la,dom(A) N dom(B1) N dom(Bs) = 0)

At e [G]

Promotion

Altrue] - promote e: ! p [G A P(A)]

Figure 4: System of rules for type inference

Ak e!"(%p 515 p) [G]
Altrue] Frec e:!mp [GAm < kA(n=1V P(A))]
AF e:1"(1%var[§] —=!°comm) [G]
Altrue] - do[8] e: 1% [G A (n =1V P(A))]

rec

do[d]

Figure 5: Additional type rules for implicit promotion

rec and do. These are two of the most commonly
used operators in programs, but since their argu-
ments must have promoted function types, explicit
promotion is redundant. Permitting one to write
do[d] e instead of do[d](promote e) and rec e instead
of rec(promote e) eliminates many promote operators
in typical programs.

We extend the type system of Figure 4 with the
two additional rules shown in Figure 5. These
rules combine Promotion with rules for applying rec
and do[6]. The conjunct (n = 1V P(A)) of the
G-constraint is due to implicit promotion: if e does
not already have a promoted function type (i.e., if
n = 0), then e is promoted implicitly by constraining
its free identifiers to all be passive.

By changing the definition of implicitly deriv-
able from Definition 1 to account for the erasure
of promote from the terms do[d](promote M) and
rec(promote M), the soundness and completeness
theorems in Section 3.1 can be carried over to this
extended system.

Theorem 5 (Soundness and Completeness)
All derivable inference judgements are valid and
every judgement implicitly derivable in SCIR is an
instance of a derivable inference judgement.

An inference judgement for a term e has instances

only if the G and C-constraints are satisfiable.
Otherwise, there does not exist any SCIR term
corresponding to e, and e should be considered
untypable. The satisfiability of kind constraints, and
hence typability, can be decided in polynomial time
for our system:

Theorem 6 (Satisfiability) Consider constraints
generated by the type system with implicit dereliction
and implicit promotions for do[d] and rec. There
exists an algorithm which checks the satisfiability of
the constraint, in time polynomial in the size of the
constraint.

As an example of the new rec rule, consider the last
step in the derivation for the term rec(f):

f:"(Ma ='a) [n =1V p(ta); true]
Ffm(la —=la) [m < n)
f:1"("a =) [true;true]
Frec(f):""a[m <nAk<IA
(m=1V(n=1Vp(la)))]

3.3 Polymorphism

In this section, we discuss the addition of Hindley-
Milner style polymorphism to SCIR. Languages
which support such polymorphism, like ML, provide
a let construct of the form let x = e; in es. Type
inference for let is usually handled with either quan-
tified types or substitution. Unfortunately, neither
approach is directly applicable to SCIR.

In Damas and Milner’s inference algorith [3], e; is
typechecked under a context that assigns a quantified
type Va. 6 to z. But in SCIR, the type variable to be
quantified over might occur in the constraints. This
implies that constraints should be incorporated into
type schemes, as in Va. p(a)Vp(8) = 6. The situation



AF (Az'.e5) {er, .., e1):0 [G]

Ablet z =e; inez: 6 [G]
(e is e with each occurrence i of z replaced by m;z)

let; (z is free in e2)

AE (Az.e2) e1:0 [G]
AbFlet z =e; in e2: 6 [G]

letz (z not free in e)

Figure 6: Additional type rules for let-based poly-
morphism

is complicated by the fact that the constraint may
refer to both bound (a) and free (8) type variables.
More study is needed to understand how this method
can be applied to SCIR.

The substitution-based approach to type infer-
ence [12] treats the let term as es[e;/x] instead.
But this would not be sound in SCIR. From the
desugared form of the let term, (Az.ez)ey, it is clear
that Az.es should not interfere with e;. However,
this condition cannot be enforced by typechecking
ezle1/z], so let £ = ey in e cannot be considered
equivalent to eq[e;/z].

We suggest a third approach as a tentative solution.
The main idea is to desugar a let term into an
application to ensure non-interference between e; and
e2. But the traditional desugared form (Az.ez2)ey
does not permit polymorphic uses of z within e,.
Instead, replace all n occurrences of z in es by terms
ma',mex!, ..., ', and call the resulting term e.
Then, typechecking let z = e; in ez is equivalent to
typechecking

(Az'.e5)(er, €1, .-, e1)

Each distinct “copy” of e;, and hence each term
mz', can be assigned a different typing, effectively
simulating polymorphism. Furthermore, by using the
cross product type to form n-tuples® the n “copies”
of e; are not considered to interfere with one another.

More precisely, we add the type rules shown in
Figure 6 to the rules of Figures 4 and 5. The rule let,
is needed to typecheck e; and to control interference
between e; and e> when z is not free in es.

For example, let id = Az.z in (id 3, id (y:=3)) can
be typechecked by deriving the following judgement:®

y: varlint] [i = 1;true]
F (A2 ((r12') 3, (m2a’) (y:=3)))(Az. 2, Az.z)
: (Mint) x comm [true]

5As mentioned in Section 3.1, the inference system can
readily be extended with product types.
6We will write p instead !°p to simplify the presentation.

4 Inference Algorithm

The type rules described in Section 3 essentially
form a “logic program” for type inference. They
are syntax-directed and are closed under type sub-
stitution. Much of the type inference algorithm is
derived directly from these rules. However, naively
implementing the rule let; would be very inefficient,
because of the need to perform term substitution on
ez and to typecheck e; multiple times in the tuple
term. Instead, we adopt the type inference method
of [12, 11.3.3].

Our type inference algorithm T' takes two argu-
ments: a preterm e and an environment mapping
identifiers to typings. The algorithm returns a pair
consisting of a typing judgement for e and another
environment.

To typecheck let £ = ejin es, we first typecheck e;
just once, and then typecheck es in an environment
that associates ¢ with the typing of e;. So, the envi-
ronment argument of T stores the principal typing
of e;, and each occurrence of = in es; will receive
an instantiation of that typing, with all type and
annotation variables fresh. This eliminates the need
to repeatedly typecheck e;, as well as the need to
substitute z with m;z in es.

To simulate the effect of let;, though, we still need
to infer a typing and constraints for (ej,...,e1),
without actually checking e;. The environment
returned by T is used for this purpose. If T'(e, E) =
(AF e:0[G], I) for some environment E and preterm
e, then I is an environment that associates the typing
of m-tuple (ey, ..., e1) with the let-bound identifier z,
where m is the number of occurrences of z in e.

An environment mapping z to a fresh copy of e;’s
typing is returned (as the second argument) from an
invocation T'(z, E). When two terms which share
a let-bound identifier x are combined, as for the
— E rule, the instantiations of x are also combined,
according to the cross product rules of [7].

Thus, when the let body e, is typechecked in
T(e2, E) = (AF e3:0 [G], I), the environment I will
associate x with a typing that represents the typing
of the n-tuple. Then, application of the — E rule
yields the typing for let.

The inference algorithm 7' is sound and complete
with respect to the type rules of Section 3: if T
succeeds for a preterm e, then the typing returned
by T is derivable in the inference system, and is
a principal typing of e. Further, if a preterm e is
typable in the inference system, then the algorithm
succeeds and returns a principal typing for e. The
reader is referred to [23] for further details, including
proofs of correctness.



Number of programs
20 4

154 14

11
10 8

5 4

1 1.2

—r—T—
0 1 2 3 4 5 6 7
Size of index

Table 1: Distribution of program indices

4.1 Practical Considerations

Implicit promotion and dereliction may cause the
types in our system to become quite complicated. In
this section we discuss preliminary experience with
our prototype of a SCIR typechecker, and suggest
some techniques to reduce the size of the constraints.

We implemented a typechecker for SCIR based on
the inference algorithm described in this section, and
tested it with the 38 programs from [1, Appendix B].
As a rough measure of the complexity of the types
inferred, we examined the index

number of atomic formulas in constraints

length of type

This index was in the range 0-7 for all examples,
with most of the indices falling below 3. So, we
feel the complexity of types inferred by our system
is reasonable. Table 1 shows a breakdown of the
number of programs which fall within each index
range.

In general, terms with polymorphic types have
larger constraints, while constraints are significantly
shorter when some ground types can be inferred.
Longer terms also tend to yield longer constraints,
due to more possibilities of dereliction as well as
more opportunities for passification of free identifiers.
We also found that our implicit promotions do not
usually add to the size of the constraints, since most
Algol-style programs do not access free identifiers
from within recursive procedures or blocks.

We introduce some simplifications which can help
to further reduce the size and complexity of types and
constraints. The simplifications are suggested by the
the following isomorphisms [15, 13]:

¢

!01 X '02

'p
'(01 X 02)

1R

Thus, types of the form !¢ and !(6; x 6) are
redundant and can be eliminated (by setting their

annotation variables to 0). Also, types of the form
Ivar[0] and !comm serve no purpose because there are
no values of such types, other than undefined values.
We can eliminate these types as well.

The only useful ! constructors are those applied
to — types and type variables. We use this fact to
formulate the following abbreviated notation:

=" = "0 -0

a” = Ing

With these simplifications and notations, we can
show the following typings:

frint x comm —¢ int x comm [true; true],
y: var[int] [true; true]
F let twice = Af. Az. f (f z)
in 7y (twice f (3, y:= 1)) :int [i = 1]
next: int — var[int] [false; true],
free: varint] [false; true]
F reclaim:int — comm [true]

next: int — varlint] [false; false],
free: varint] [false; true]
F (map reclaim):int — comm [true]

The first term illustrates cross products and poly-
morphic terms. The G-constraint ¢ = 1 represents
the only possible way that the type of f can be
passive, and the only way that f can be a passive
free identifier.

The next term is the reclaim function of Fig-
ure 1. The free identifiers next and free cannot be
passified. The last example is the application (map
reclaim) from the Introduction. The C-constraint of
next is false, so next is not a passive free identifier,
and the term is not typable.

5 Conclusion

This paper extends the previous research on type
inference for SCIR-based languages. We have shown
how the coercion operators promote and derelict may
be left implicit, and introduced a technique for adding
let-based polymorphism to the language. The com-
plexity of typings produced by our system remains
within practical limits.

Possible areas for future work include investigating
how type quantification may be introduced into the
system. It would also be interesting to study exten-
sions of SCI to include references, as in ILC [19, 20].
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