
On Binary Methods

Kim Bruce�

Department of Computer Science� Williams College� Williamstown� Massachusetts ������ USA�

Luca Cardelliy

Digital Equipment Corporation� Systems Research Center� ��� Lytton Ave� Palo Alto� CA �	���� USA�

Giuseppe Castagnaz

CNRS� LIENS�DMI�
Ecole Normale Sup
erieure� 	� rue d�Ulm� ����� Paris� France�

The Hopkins Objects Groupx

Department of Computer Science� The Johns Hopkins University� Baltimore� Maryland ������ USA

Gary T� Leavens�

��� Atanaso� Hall� Department of Computer Science� Iowa State University� Ames� Iowa� ������ USA�

Benjamin Piercek

Computer Laboratory� New Museums Site� Pembroke Street� Cambridge CB� �QG� United Kingdom�

Giving types to binary methods causes signi�cant problems

for object�oriented language designers and programmers�

This paper o�ers a comprehensive description of the prob�

lems arising from typing binary methods� and collects and

contrasts diverse views and solutions� It summarizes the

current debate on the problem of binary methods for a

wide audience�

� Introduction

Binary methods have caused great di�culty for design�
ers of strongly typed object�oriented languages and for
programmers using those languages� In this paper we

�partially supported by NSF grant CCR�������� and NSF
grant CCR��������� Internet	kim�cs�williams�edu

yInternet	 luca�src�dec�com�
zInternet	 castagna�dmi�ens�fr
xJonathan Eifrig
 Scott Smith
 Valery Trifonov� Contact

Scott Smith� Research partially supported by NSF grant
CCR�������� and AFOSR grant F���������������� Internet	
scott�cs�jhu�edu�

�partially supported by NSF grants CCR������
� and CCR�
�
������ Internet	 leavens�cs�iastate�edu�

kInternet	 benjamin�pierce�cl�cam�ac�uk
c� John Wiley � Sons
 Inc�

To appear in THEORY AND PRACTICE OF OBJECT SYSTEMS

study the sources of these problems and compare and
contrast a variety of solutions�

The authors of this paper have di�ering views on
what the most appropriate solutions are� We have at�
tempted here to collect together the solutions that indi�
viduals among us advocate and to present a consensus
on what can be fairly stated as strengths and weak�
nesses of each approach� This paper grew from presen�
tations and discussions at the �nd Workshop on Foun�
dations of Object�Oriented Languages� which was spon�
sored by NSF and ESPRIT and held in Paris in June�
���� 	��
�

Let us begin by �xing some basic terminology� A
class is the code that de�nes the instance variables and
methods of some objects� The objects that conform to
this de�nition are called instances of the class� �The is�
sues that we discuss also arise in delegation�based lan�
guages
 for simplicity we concentrate on classes�� In
this article we use new as a primitive that generates an
instance of a class from the class name �and some ini�
tial values for its instance variables�� An interface type�
also called an object type or simply a type contains the
names of the object�s methods� and the types of each
method�s arguments and results� Due to subtyping� an
object may have multiple interface types
 what we mean

� To appear in THEORY AND PRACTICE OF OBJECT SYSTEMS

when we mention the �type of an object� is the least
such type �i�e�� the most speci�c such type�� Similarly
several classes may generate objects of the same inter�
face type if the hidden implementations are distinct� but
the public methods have the same type� Usually� for a
class named SomeClass � the interface type of its objects
is written Some
 that is� we use a naming convention
where dropping Class from the end of a class name is
used to give a type name� In a few sections� classes
are identi�ed with types� as they are in languages like
C�� and Ei�el� We will note this explicitly in those
sections� and use the name Some both as the name of
the class �we will not use the Class su�x� and as the
�least� interface type of objects of that class�

Binary operations which take two arguments of the
same type are quite familiar in non�object�oriented lan�
guages� Typical examples include arithmetic operations
on number objects� as well as binary relations such as
� and �� and set operations like subset and union� In
object�oriented languages these operations are gener�
ally written as methods� In this case the �rst argu�
ment of the binary operation becomes the receiver of
a corresponding �message�� with the second parame�
ter becoming the only argument� Consequently� we de�
�ne a binary method of some object of type � as a
method that has an argument of the same type � � Such
a method is binary in the sense that it acts on two ob�
jects of the same type� the object passed as argument
and the receiving object itself� In general� a binary
method could also include other arguments �including
other arguments of the same type�
 by a standard abuse
of terminology we still refer to these as binary methods�
We provide examples in an object�oriented style later�

A subclass is code that extends a class or classes
�called the superclasses of the subclass�� Subclasses
inherit de�nitions of instance variables and methods
from their superclasses� A subclass may also override
the de�nitions of methods it would otherwise inherit by
rede�ning them� Because a subclass inherits code for
methods� it also inherits interface type information for
the methods that it does not override�

The most signi�cant problem with binary methods
lies in their typing in the presence of inheritance� The
source of this problem is that the type of the argument
of a binary method naturally should change in parallel
to changes in the type of the object produced by the
subclass� The di�culty is that these type changes may
result in subclasses which may no longer produce sub�
types� On the other hand if inheritance is limited to
always produce subtypes then useful subclasses can not
be directly de�ned� and work�arounds must be found�
A second problem is the asymmetry of a binary method�
the method may have privileged access to only one of
the two objects the method is invoked on� These two
problems are described in more detail in Section ��

Sections � and � concentrate on solutions to the prob�
lem of typing binary methods in the presence of inher�
itance� We consider the question from two sides� in

Section �� we re�ect on whether it actually need be
solved at all �i�e�� whether binary operations might best
not be treated as methods�
 in Section �� we meet the
problem head�on and review some solutions that have
been proposed�

Turning to the problem of privileged access� Section �
sketches a technique by which object�style data encap�
sulation can be blended with conventional ADT�style
encapsulation to allow implementation of binary oper�
ations with privileged access to object representations�

Section � o�ers concluding remarks�
Although it is di�cult to form a complete list of cri�

teria used to evaluate di�erent solutions to the binary
methods problem� a partial list of general criteria could
be formulated as follows�

�� How expressive is the solution� In particular� to
what extent does it allow reasonable subclassing
and message sends�

�� Do subclasses always produce subtypes�

�� Do binary methods have privileged access to the
argument�s state�

�� Is program development modular� In particular�
does adding a new class ever force modi�cation
to existing code� and can module interfaces be de�
�ned�

�� Are the receiver and argument of a binary method
treated symmetrically�

�� Does the solution avoid unnecessary code duplica�
tion�

These criteria are used to evaluate the di�erent ap�
proaches in the sections that follow�

We only consider type systems that are sound in the
sense that code that statically passes the type system
cannot produce type errors at run time� Therefore we
do not consider constructs that allow one to escape from
the type system �by means such as a �cast� in C���
to be a �solution� to the problems posed by binary
methods
 such type systems cannot guarantee sound�
ness without run�time checks� We also ignore solutions
based on the typecase construct� since it is not general
enough to avoid the problems that message passing is
supposed to solve
 see Section ����� for further details�

� The Problem of Binary Meth�

ods

This section describes the problems caused by binary
methods� The �rst subsection describes typing prob�
lems in the presence of inheritance� and the second de�
scribes problems with privileged access�

To appear in THEORY AND PRACTICE OF OBJECT SYSTEMS �

��� Typing Binary Methods in the Pres�
ence of Inheritance

In procedural or functional languages� the type of a bi�
nary function that takes two arguments of type � and
returns a value of type � is written � � � � �� In an
object�oriented language� functions or procedures are
typically replaced by methods belonging to a class cor�
responding to one of the arguments� Figure � shows a
standard example of a class with a binary method�� In

class PointClass
instance variables

xValue� real
yValue� real

methods

x � real is return�xValue�
y � real is return�yValue�
equal �p� Point �� bool is

return� �xValue��p�x � �� �yValue��p�y� �
end class

Figure �� The class PointClass �

PointClass� the method equal � which tests for equal�
ity with another instance of PointClass� is written
with a single parameter of type Point � the type of ob�
jects instantiated from PointClass� As may be seen
in this example� binary operations�when regarded as
methods�are asymmetric� the receiver plays a role
somewhat di�erent than the parameter� This distinc�
tion is highlighted when we de�ne a subclass of a class
with a binary method�

Figure � de�nes a subclass ColorPointClass of
PointClass� In ColorPointClass� the type of the pa�
rameter of equal is changed to ColorPoint to match the
type of the receiver� allowing two ColorPoint objects to
be compared by the equal method� which overrides the
behavior of equal for points�

We generally write object types similarly to the
type of the record of methods�� Therefore instances
of PointClass and ColorPointClass have the following
object types�

Point � OT hhx � real
 y� real

equal �Point � boolii

ColorPoint � OT hhx � real
 y� real
 c� string

�A few notes on our notation� Methods are functions or proce�
dures whose body occurs after the keyword is� We write parame�
terless functions and procedures by omitting the parentheses� We
write the type of parameterless functions as if they were variables
of their return type� That is
 we omit an implicit unit � before
the result type� Methods are selected by dot notation� thus o�m
denotes the method of name m de�ned for the object o� Com�
mented text is preceded by �����

�We presume that instance variables are not accessible from
outside of the object�

class ColorPointClass subclass of PointClass
instance variables

�� xValue and yValue are inherited
cValue � string

methods

�� x and y are inherited
c� string is return�cValue�
�� equal is overriden

equal �p� ColorPoint�� bool is
return� �cValue��p�c� �� �xValue��p�x �

�� �yValue��p�y� �
end class

Figure �� The class ColorPointClass�

equal �ColorPoint � boolii

The pre�x OT is used to distinguish object types from
record types� Note that both of these de�nitions happen
to be recursive� the type being de�ned appears on the
right�hand side of the �� It is not uncommon for the
type being de�ned to appear as either an argument or
result type in its methods�

Informally� a type � is a subtype of � � written � �� � �
if an expression of type � can be used in any context
that expects an expression of type � �cf� 	��� ��� ��
��
Associated with subtyping is the principle of subsump�
tion �subtype polymorphism�� if � �� � and a pro�
gram fragment has type �� it also has type � � A sim�
ple example of subtyping in object�oriented program�
ming is that an object type is a subtype of the type
with some methods removed� as any context that ex�
pects the object with fewer methods will not directly
use the extra methods and thus no type errors will oc�
cur� In fact it is also possible to replace the type of any
method by a subtype and still have the resulting object
types in the subtype relation� Thus the general rule is
OT hhm��S�� � � � �mn�Sn� � � � �mn�k�Sn�kii �� OT hhm��T��
� � � �mn�Tnii �with k � �� if and only if� for each
i � f���ng� Si �� Ti�

The rule for subtyping functions states that � �
� �� �� � � � if and only if �� �� � and � �� � � 	��
�
�This is sometimes called the �contravariant rule� be�
cause it is contravariant in the left argument of ���
This rule is informally justi�ed by the following� If f is
expected to have type �� � � �� but actually has type
� � � � then f can be passed an argument of type ��

when �by subsumption� �� �� �
 furthermore� the result
of such a call will have type � � which �by subsumption�
can be considered to be of type � �� Hence all functions
of type � � � can be used as if they had type �� � � �

without type error�
Subtype polymorphism is a useful feature of object�

oriented programming� if subclasses correspond to sub�
types� a subclass object can always be passed to a func�
tion or method expecting a superclass object� allowing

� To appear in THEORY AND PRACTICE OF OBJECT SYSTEMS

re�use of code� Unfortunately� subclasses do not always
generate subtypes
 this can happen if the types of meth�
ods need to change in subclasses to require more spe�
cialized behavior from their arguments� In particular�
since the equal method in ColorPointClass checks its
argument for color as well as position� the argument
type needs to change� as the example indicates� Be�
cause of the contravariance of the subtyping relation
on the domain of equal � ColorPoint is not a subtype
of Point � For the subtype relation to hold� the type
of equal in ColorPoint would have to be a subtype of
the type in Point � Thus ColorPoint � bool must be a
subtype of Point � bool � But� by the subtyping prin�
ciple for functions� this requires Point to be a subtype
of ColorPoint � exactly the opposite of what we are after
and clearly untrue�

This loss of subtyping in this case is not due to
any problem with the de�nition of subtyping for func�
tions
 the procedure breakit of Figure � illustrates how
allowing this subtyping would be unsound� When
breakit is applied to an actual parameter of type Point �
there is no problem� However if the actual parame�
ter is a ColorPoint � a run�time error will occur when
p�equal�nuPt� is evaluated� Since the value of p will
be a ColorPoint� the code for equal in ColorPointClass
will be executed� When nuPt is sent the message c� it
will fail because it has no corresponding method� Thus�
in a sound type system� a call of breakit with an actual
parameter of type ColorPoint must not type check�

procedure breakit�p� Point �
var

nuPt� Point
begin

nuPt �� new PointClass����� ����
if p�equal�nuPt� then
� � �

end

Figure �� The procedure breakit�

Most statically�typed object�oriented languages re�
quire subclasses to generate subtypes� even in the pres�
ence of binary methods� One type requirement that has
been used to this end is that the types of methods may
not be changed upon inheritance
 this is done� for exam�
ple� in C�� 	��
 Object Pascal 	��
� and Modula�� 	��
�
In such languages� one cannot write ColorPointClass as
in Figure �� with the typing discussed above�

Ei�el does allow argument types to be specialized
in a subclass�s methods
 for example� it would allow
ColorPointClass to be written as in Figure �� We call
such argument specialization covariant argument spe�
cialization� because it goes against the contravariant
rule in argument positions� Ei�el in addition preserves
the invariant that subclasses generate subtypes� but this

means breakit would type�check and produce a run�time
error when passed a ColorPoint � For Ei�el there is a
proposal to compensate for the resulting insecurity in
the type system by a link�time data��ow analysis of the
program �called a system validity check�� which would�
if implemented� catch possible type errors 	��
� But
even if that were done� the �subtype� relation would
have no clear meaning� Ei�el would claim ColorPoint
to be a subtype of Point � but would not allow anything
but a Point to be passed to breakit� So even though Eif�
fel would judge ColorPoint to be a �subtype� of Point �
ColorPoint objects could not be used in all contexts
where Point objects could be used�

The Point�ColorPoint example illustrates some but
not all of the problems that arise in typing binary meth�
ods in the presence of inheritance� Further examples
that illustrate additional problems will be presented in
the sections below�

��� Privileged Access to Object Repre�
sentations

A completely di�erent kind of problem with binary op�
erations on objects�whether they are methods or free�
standing procedures�is that they must often be given
privileged access to the instance variables of both of their
arguments�

The equality methods of points and colored points
are examples of the simpler case where this need does
not arise�the necessary attributes of the argument are
already publicly available through existing methods� In
order to write the equal method for the point class� we
only needed to compare the receiver�s instance variables
xValue and yValue to the values returned by the x and y
methods of the argument p� There is no need to access
p�s instance variables directly� Indeed� p might not even
have instance variables named xValue and yValue
 there
is no need to know anything at all about its internal
representation� The situation is similar for the equal of
the colored point class�

On the other hand� suppose we want to write a class
de�nition for simple integer set objects with the follow�
ing interface type�

IntSet � OT hhadd � int � unit

member � int � bool

union � IntSet � IntSet

superSetOf � IntSet � boolii

We can easily choose a representation for integer sets�
�say� as lists of integers� and implement the add and
member methods as in Figure �� But when we come to
implementing the union and superSetOf methods� we
get stuck� given the interface type we have chosen for
sets� there is no way to �nd out what elements a given
set contains�

The obvious thing to do is to extend the public inter�
face of sets with an enumerate method that �for exam�
ple� returns a list of the elements of the set� But suppose

To appear in THEORY AND PRACTICE OF OBJECT SYSTEMS �

class IntSetClass
instance variables

elts� IntList
methods

add �i� int�� unit is elts �� elts�cons�i�
member�i� int�� bool is return�elts�memq�i��
union�s� IntSet�� IntSet is ���
superSetOf �s� IntSet �� bool is ���

end class

Figure �� The class IntSetClass� for which writing
superSetOf and union is problematic�

we want to use a more e�cient internal representation
for sets� storing the elements in a bit string� We would
certainly expect not only the add and member meth�
ods to be e�cient� but superSetOf and union as well�
But� to achieve good performance� union needs to work
directly with the bit string representations of the two
sets� so the enumerate method has to be replaced by an
asBitString method that returns the underlying repre�
sentation� Doing so is unsatisfactory� because it makes
representation details visible to users�

In order to handle binary operations like equal as
methods� we need the type of a parameter of a method
to be the same as the type of the receiving object
 for
methods like superSetOf and union � we need an addi�
tional mechanism for constraining the implementation
of a parameter to be the same as the receiver�s� Indeed�
such a mechanism is required whether or not we want
to consider union a proper method of set objects� an
external procedure for computing the union of two set
objects will also need to gain privileged access to the
internal representations of both of its arguments�

� Avoiding Binary Methods

Sometimes the simplest solution to a problem is to ig�
nore it� In this section we explore the position that
binary operations like equal � union � and � should not
be regarded as methods of either of their argument ob�
jects� thus sidestepping the thorny typing issues raised
so far�

There are some theoretical bene�ts to taking this
step� For example� aside from binary methods� the
types of methods are always positive� in the sense that
the object type itself appears only in result positions�
In this case� the classic encoding of object types as re�
cursive records 	��� ��
 may be replaced by an encoding
where objects are modeled by existential types 	��� ��
�

It may also be argued that keeping binary opera�
tions separate from their arguments avoids conceptual
confusion� Turning a symmetric operation like � into
a method gives one of its arguments an arti�cially spe�
cial status� requiring programmers to think in terms of

contorted locutions like �Ask the number a to add it�
self to b and send back the result�� instead of the more
straightforward �Compute the sum of a and b�� �How�
ever� having said this� it is only fair to give the method�
ological counterargument� An important property of
objects is their appearance as active entities that en�
capsulate both data and the code acting on that data�
Removing binary methods from objects disrupts this
property� requiring an additional layer of module struc�
ture to encapsulate the binary methods with their class�
Section � suggests that when binary methods require
privileged access to both object states� such additional
encapsulation may be needed anyway��

A �nal reason for avoiding binary methods is that
they can exacerbate di�culties with behavioral subtyp�
ing of speci�cations� Behavioral subtyping is a stronger
relationship than subtyping� and� in addition to guar�
antees about lack of type errors� makes behavioral guar�
antees 	�� �� ��� ��� ��� ��
� The degree of behavioral
subtyping between speci�cations is limited if the speci��
cations of supertypes are too strong to allow reasonable
implementations of �behavioral subtypes�� The prob�
lem is that if a subtype has extra information in its
objects� then the methods of the supertype have to be
carefully speci�ed if they are to be weak enough to allow
for behavioral subtyping� A weak enough speci�cation
will allow a subtype�s binary methods to combine the
extra information in the subtype objects� the receiver
and the additional arguments� �With just unary meth�
ods� on the other hand� keeping or ignoring the extra in�
formation usually works� even without any forethought
on the part of the speci�er�� For example� the type
ColorPoint has extra information� namely the color of
the point� The speci�cations of the unary methods
x and y simply ignore the point�s color� which allows
for behavioral subtyping� However� if one speci�es the
equal method for the type Point so that it returns true
if and only if the x and y coordinates are equal� then
behavioral subtypes cannot take such extra information
into account�

With these arguments in mind� we consider in this
section some alternatives to binary methods�

��� Using Functions Instead of Binary

Methods

In languages that provide both objects and conventional
procedural abstraction� an alternative to using binary
methods is simply to make binary operations into func�
tions� These binary functions can be de�ned outside
of classes� and can be applied to pairs of arguments as
usual�

function eqPoint�p��p�� Point�� bool is
return� �p��x �� p��x� �� �p��y �� p��y��

function eqColorPoint�cp��cp�� ColorPoint��bool is
return� �cp��x �� cp��x� �� �cp��y �� cp��y�

�� �cp��c �� cp��c��

� To appear in THEORY AND PRACTICE OF OBJECT SYSTEMS

where Point and ColorPoint no longer include the equal
method�

Ordinarily� one advantage of using methods instead
of functions is dynamic dispatch� each class can choose
its own code to execute in response to a given mes�
sage� Therefore� moving from binary methods to bi�
nary functions may seem a step backwards� The pro�
grammer must now know when to apply eqPoint and
eqColorPoint� instead of relying on the objects them�
selves �knowing� which equality is appropriate� �To be
fair� it is worth noting that it is di�cult to achieve dy�
namic dispatch for binary methods such as equal � with�
out adding additional methods to the classes PointClass
and ColorPointClass� as in Section �����

The loss of dynamic dispatch when functions are
used instead of binary methods is a serious problem�
The problem manifests itself by causing code duplica�
tion which would not be needed if methods were used�
When methods are used� it often occurs that the body
of one method� m� invokes another method� n� on the
receiving object itself� If n is overridden in a subclass�
then invocations of m on objects generated by the sub�
class will correctly call the new version of n� However�
if n happens to be a binary method� then replacing it
with two �or more� binary functions results in a loss of
dynamic dispatch� The loss of dynamic dispatch means
that either the correct version of n will not be called
from the inheritedm in the subclass� or extra code must
be written in the subclass �for method m� to call the
proper version of n�

Figure � is an example that illustrates the prob�
lems caused by loss of dynamic dispatch� �Although
we have no hard data on how common such exam�
ples are� this example is a combination of standard
idioms�� LinkClass is a simple class of linked list ob�
jects� and DoubleLinkClass is a subclass that uses dou�
ble links �a more complete implementation would in�
clude methods such as reverse� map� and length�� The
type MyType given to variables next and link in the
example represents the type of objects of the current
class� That is� it means Link in the class LinkClass�
but means DoubleLink in the class DoubleLinkClass
and in the instance variables and methods it inherits
from LinkClass� MyType will be discussed in more de�
tail in Section ��� below
 also cf� 	��� ��� ��� ��
� The
objects now have only one interesting method� append �
which is inherited by DoubleLinkClass � This method
uses setNext � a binary method� to set the pointer next�
and setNext is overridden in DoubleLinkClass to also
properly maintain the prev link to the previous object�

In a hypothetical function encoding� the setNext
method would be replaced by functions setNextLink

and setNextDoubleLink that lie outside the class def�
inition �ignoring for now questions of privileged ac�
cess�� However� since append invokes setNext � it would
have to be re�written as two almost identical func�
tions� one invoking setNextLink and the other invoking
setNextDoubleLink� causing unnecessary code duplica�

tion� An in�place reverse method of no arguments is
another method for which inheritance would su�er un�
der this encoding� Thus dispatch can be statically re�
solved� but only at the cost of code duplication if this
scheme is used�

��� Making Both Arguments into One
Object

Even in a �purist� object�oriented language where every
operation is treated as a message sent to some object�
we may place binary operations outside of the objects on
which they operate by turning the two argument objects
into a single pair object and invoking the method on
the pair� To see how this would work� imagine that the
types Point and ColorPoint do not have any binary
methods� For example� they could be�

Point � OT hhx � real
 y � realii
ColorPoint � OT hhx � real
 y � real
 c� stringii

With this de�nition� ColorPoint would be a subtype of
Point �

Now de�ne two new classes� PointPairClass and
ColorPointPairClass� each with a method named equal �
as shown in Figure �� Note that the types of
the objects generated by these classes are the same�
OT hhequal � boolii� since they have the same public in�
terface�

class PointPairClass
instance variables

p�� Point
p�� Point

methods

equal � bool is
return� �p��x��p��x� �� �p��y��p��y� �

end class

class ColorPointPairClass
instance variables

p�� ColorPoint
p�� ColorPoint

methods

equal � bool is
return��p��x��p��x� �� �p��y��p��y�

�� �p��c��p��c� �
end class

Figure �� The classes PointPairClass and
ColorPointPairClass�

So the former binary methods are now unary meth�
ods of these new classes� What would originally have
been written as�

aCPt�equal�anotherCPt�

To appear in THEORY AND PRACTICE OF OBJECT SYSTEMS �

class LinkClass
instance variables

value� integer
next� MyType

methods

getValue� integer is return�value�
getNext � MyType is return�next�
setValue�n� integer�� unit is value �� n

setNext�link� MyType�� unit is next �� link

append �link� MyType�� unit is
if next �� nil then self�setNext�link� else next�append �link�

end class

class DoubleLinkClass subclass of LinkClass
instance variables �� value and next are inherited

prev� MyType
methods �� getValue� getNext� setValue� and append are inherited� setNext is overridden

getPrev � MyType is return�prev�
setNext�link� MyType�� unit is next �� link
 link�setPrev�self�
setPrev�link� MyType�� unit is prev �� link

end class

Figure �� The classes LinkClass and DoubleLinkClass �

to compare two colored points� will now be written with
these new classes as�

�new PointPairClass�aCPt� anotherCPt���equal

If the types of aCPt and anotherCPt are both
ColorPoint� then one might wish instead to compare
them as colored points� in which case one would write�

�new ColorPointPairClass�aCPt� anotherCPt���equal

There is a bene�t in making these pair objects� it clar�
i�es the perspective desired for the equality compari�
son� When one creates a PointPairClass object� it is
clear what behavior is expected from its equal method

this expectation is borne out even when the two points
that make up the PointPairClass object are actually
ColorPoint objects�

Because the classes generate objects of the same �in�
terface� type� one can have a variable myPointPair that
denotes objects generated by either PointPairClass or
ColorPointPairClass� In this case a message send such
as �myPointPair�equal� results in the invocation of the
equal method de�ned in whichever class was used to
generate the object� Thus� sending the equal mes�
sage to a pair object gets the view with which the
pair was created� This should be contrasted with the
function call �eqPoint�aCPt� anotherCPt��� which al�
ways compares its two arguments as points� It can
also be contrasted with a message�send of the form
�aCPt�equal�anotherCPt��� which always uses the equal
code of ColorPointClass�

This approach has problems similar to the function
approach that was discussed previously�the LinkClass

example of Figure � would require code duplication for
inherited methods such as append �

� Embracing Binary Methods

Having examined what happens if binary methods are
avoided� in this section we consider the typing mecha�
nisms that must come into play if one chooses not to
avoid them�

Two important solutions have been proposed to
the typing problems posed by binary methods� One
solution� �rst proposed by the Abel project at HP
labs 	��
� develops a method that partially solves the
Point�ColorPoint problem by relaxing the requirement
that subclasses generate subtypes� As they put it� �In�
heritance is not subtyping�� They did not� however�
propose a concrete mechanism for realizing their ideas
in an object�oriented language� In Section ���� we show
one way this may be done using the concept ofmatching
	��� ��
�

The other important solution was presented in two
papers at the ���� OOPSLA conference 	�� ��
� These
papers deal with the static type�checking of languages
with multi�methods �also called generic functions or
overloaded functions�� Multi�methods as in CLOS al�
low� as we show in Section ������ the Point�ColorPoint
example to be typed preserving the subtyping of the
two classes� But this is obtained at the expense of the
encapsulation of the methods� since the generic func�
tions� like the functions in Section ���� are separated
from objects �objects encapsulate only data�� In Sec�

� To appear in THEORY AND PRACTICE OF OBJECT SYSTEMS

tion ����� we show how to reconcile multi�methods with
objects encapsulating data and code 	��� ��
�

Closely related to the solutions of Section ��� is In�
galls� solution to the multiple dispatch problem 	��
� He
presented his solution in an untyped framework� but
it can be adapted to a typed language� as Section ���
shows�

Lastly� we show in Section ��� how a general prin�
ciple of giving more �precise� types to binary methods
produces more �exible typings across a range of ap�
proaches� even in the case where binary operations are
not treated as methods�

��� Matching

This section describes how a relation called �matching��
which is weaker than subtyping� can replace subtyping
in many situations 	��
� In particular� we will see below
that this generalization of subtyping provides us with
the ability to handle binary methods smoothly�

����� Generalizing subtyping to matching

As seen in Section ���� languages that insist that sub�
classes generate subtypes often compensate for the re�
sulting type problems by restricting the programmer�s
ability to change the types of parameters of inherited
methods� This e�ectively eliminates the use of binary
methods in these cases� If one feels that binary meth�
ods are important� then an obvious solution is to give up
the identi�cation of subclasses with subtypes� An im�
portant advantage of this decision� not discussed further
here� is to separate the notion of interface �type� from
that of implementation �class�� In the remainder of this
section we assume such a separation has been made� and
thus that the notions of subtyping and matching �de�
�ned below� depend only on the interfaces of objects�
not the classes generating them�

Most object�oriented languages provide a name for
the receiver of a message �e�g�� self or this�� which can
be used inside method bodies� Similarly� we use MyType
as a keyword that denotes the type of the receiver 	��
�
It may be used in the de�nition of methods whose pa�
rameters or return types should be the same as that
of the receiver� One can think of the object type in
the following as simply another way of writing the type
Point given in section ���� and it could also be the type
of objects of a polar implementation of points�

Point � OT hhx � real
 y � real
 equal �MyType� boolii
� PolarPoint

One advantage of MyType is that it makes it easier
for human readers to compare types like Point and
PolarPoint � A more important advantage is that it
works well with inheritance of methods� because its
meaning changes in the subclass� For example� when
MyType is used in the de�nition of ColorPointClass� all
occurrences of MyType in the methods automatically
represent ColorPoint rather than Point �

ColorPoint � OT hh x � real
 y � real
 c� string

equal �MyType� boolii

As before we can show the type ColorPoint is not a sub�
type of Point � However� there is a relationship between
the types ColorPoint and Point � which is clearly appar�
ent when looking at their types written using MyType�
One can see that the only di�erence is the addition of
a new method� c� to ColorPoint�

We say one object type matches another if the �rst
has at least the methods of the second and the cor�
responding method types are the same� considering
MyType in one to be �the same� asMyType in the other�
We use �� to denote this relationship� In symbols�

OT hhm�� ��
 � � �
mn� �nii �� OT hhm�� ��
 � � �
mk� �kii

holds i� k � n� �In fact� a more general de�nition is pos�
sible in which the types of corresponding methods of the
�rst are all subtypes of the corresponding types of the
second 	��
� This means that the corresponding result
types are subtypes�vary in a covariant way�while the
corresponding parameter types are supertypes�vary in
a contravariant way� However� this more general rela�
tion will not be needed here��

Because the meaning of MyType changes in sub�
classes� the meanings of the types of methods in sub�
classes need not be the same as those of the correspond�
ing methods in the superclass� However� type�safe rules
for de�ning subclasses can ensure that the types of the
objects from the subclass always match the types of the
objects generated from the superclass� In order to ob�
tain type safety� it is necessary to type check the meth�
ods of a class under the assumption that MyType only
matches the type of objects being de�ned by the class�
This ensures that these methods will continue to be
type�safe when inherited in subclasses 	��
� While some
routines will not type check with this assumption� even
though they would have passed under the stronger as�
sumption that MyType is exactly the type of objects
generated by this class� in our �admittedly not compre�
hensive� experience� very few routines fail� Matching
tells you what messages can be sent to an object� and
what their types will be� However� if S �� T � it does
not allow the use of a parameter of type S where one
of type T is expected� Nor does it allow assignment of
expressions of type S to variables of type T �

As stated earlier� ColorPoint is not a subtype of
Point � ColorPoint and Point provide an example of
two types which match� but are not subtypes� Basically�
if a class has a binary method� that is� a method with
a parameter of type MyType� subclasses of that class
that add new methods will not generate subtypes� On
the other hand if a method�s return type is MyType�
this will not stand in the way of subtyping� Both of
these follow easily from the subtyping rule for recursive
types in 	�
� and the fact that MyType can be seen as
an abbreviation for a recursive de�nition of types�

What if we want to use a ColorPoint as an actual
parameter in a procedure or function that originally ex�

To appear in THEORY AND PRACTICE OF OBJECT SYSTEMS �

pected a Point parameter� Since the example of breakit
in the introduction showed this could not always be
done� another� more restrictive� construct is needed�

We can introduce a language feature to support a
form of bounded polymorphism using matching� With
this feature� functions can be speci�ed to take type pa�
rameters whose values are restricted to �match� another
type� Of course� unrestricted type parameters can also
be provided� but in a large number of situations some
sort of restriction is necessary�

As an example� suppose we wish to write a routine
to sort an array whose elements are drawn from some
ordered set� In an object�oriented language� the require�
ment that the elements be ordered can be modeled by
demanding that they support �at least� less than and
equal methods� De�ne�

Comparable � OT hh less than �MyType � bool �
equal �MyType � boolii

With this de�nition� the header of our polymor�
phic sort routine is as follows� where the notation
�T��Comparable� means that the type parameter T

must match the type Comparable�

procedure sort�T��Comparable
 a� Array of T �

And the function then has type�

sort � All�T��Comparable� �Array of T � � unit �

If PhoneEntry is an object type supporting at least
methods less than and equal of type

MyType� bool �

and if pArray is an array of elements of type
PhoneEntry � then sort�PhoneEntry � pArray� is a legal
call of sort�

It is worth noting here that the type Comparable has
no useful proper subtypes because of the appearance
of MyType as the type of a parameter in its methods�
Thus� if the bounds on type parameters were only ex�
pressed in terms of subtyping� it would be impossible
to apply the sort routine to any interesting arguments�

The use of bounded matching is equivalent to the
use of F�bounded polymorphism suggested in 	��
� It
is also very similar in e�ect to the restrictions on type
parameters expressible in CLU and Ada �as well as the
type classes of Haskell�� For example� in Ada one would
write the sort routine as�

generic

type t is private

with function ����x�y� t� return BOOLEAN

is ��

with function ����x�y� t� return BOOLEAN

is ��

procedure sort �A� in out array ���� of t� is � � �

�The notation All�S �� T �E�S� is the universally polymor�
phic type that can be instantiated to E�S�
 for all S such that
S �� T �

This is similar to the sort procedure written with
bounded matching� Object�oriented languages contain�
ing similar constructs are Emerald 	��
� School 	��
� and
Theta 	��
�

Returning to our example with Point � if f�p� Point�
is a function accepting an argument of type Point then
it can often be rewritten in the form f�T��Point
 p�T�
so that it accepts a type parameter matching Point and
an object of that type� If this type checks� then it will
be possible to apply it to the type ColorPoint as well
as an object of type ColorPoint� Of course this rewrit�
ing will not succeed in all cases�breakit being a prime
example� The reason this transformation will not suc�
ceed in breakit is that the formal parameter nuPt will
be of some type T �� Point � while p will always be of
type Point � Thus we cannot guarantee that the type of
the argument to equal in the body of breakit will be the
same as the type of p� and the type check must fail�

What can actually be done with the information that
one type matches another� The matching relation guar�
antees that certain messages may be sent to an object�
If T �� Comparable then objects of type T can be
sent messages less than and equal �and their parame�
ters must also be of type T �� It turns out that for most
situations this is all that is needed in order to ensure
that the object is usable� The stronger information that
a type is actually a subtype of another is generally not
needed�

In particular� bounded matching can be viewed as
an explicit� weakened �and hence more generally ap�
plicable� form of subtyping� If subsumption were nec�
essary to type a function call� the code could be re�
written so the function constrains the type parameter�
like Comparable above� and function invocations explic�
itly pass the �smaller� type as argument� Simple sub�
typing is handled by the case where the type constraint
contains no occurrences of MyType� The disadvantage
of this encoding of subtyping is that all subtypings must
be explicitly given in the program�

In general the use of bounded matching requires one
to �plan ahead�� by identifying the type parameter to
be matched against� This was illustrated in the sort

example� the type Comparable needs to be discovered
by the programmer� and every use of sort requires that
an explicit type parameter be passed� This is in con�
trast to subtyping� which is implicit and� as mentioned
above� does not require any explicit type instantiation
to be given in the program� �It is an interesting open
problem to show how to automatically infer declara�
tions that use matching�� If we were to decide to elimi�
nate subtyping altogether in favor of matching� then all
object subtypings would have to be recast as bounded
matchings� Moreover� since we have� thus far� only de�
�ned matching for object types� we would not be able
to capture the use of subtyping on other types without
extending the de�nition of matching�

Another di�culty with relying only on matching is
that it is not type�safe to perform an assignment to

�� To appear in THEORY AND PRACTICE OF OBJECT SYSTEMS

a variable of an object whose type only matches that
of the variable� For example� imagine a framework for
graphical user interfaces� in which one creates a main
window as a subclass of some framework class� and has
to store the window in some variable� In this case the
type of the subclass objects has to be a subtype of the
declared type of the variable in the framework� Sub�
typing seems to be required for this sort of cross�type
assignment� While this can be worked around by using
type parameters to designate the types of instance vari�
ables� it does limit �exibility in handling heterogeneous
data structures� all of whose elements are subtypes of a
given type�

The use of MyType is su�cient to write examples
such as linked lists or trees� where methods for attach�
ing a node to another or returning an adjoining node
must be binary methods� The types of the instance
variables of these nodes also can be written in terms
of MyType� If the de�nition of singly�linked node is
written using MyType in this way� it is easy to de�ne a
doubly�linked node as a subclass of singly�linked node�
Figure � presents such an example� As expected� the
type of a doubly�linked node is not a subtype of singly�
linked node� but it does match� It is then relatively
easy to write an implementation for lists which takes a
type parameter which matches singly�linked node� By
applying this to either the type for singly�linked node or
doubly�linked node� the corresponding kind of list can
be generated without code duplication� �See 	��
 for the
details of this parameterized example��

The use of MyType in class de�nitions makes it eas�
ier to write useful subclasses in statically typed object�
oriented languages� especially when the superclasses
contain binary methods� As illustrated in the sorting
example above� the matching relation is very useful in
de�ning bounded polymorphic functions� In fact� the
use of these two features should provide a type�safe re�
placement for the �unsafe� uses of covariant argument
specialization typing in languages like Ei�el or O� 	�
�
while providing comparable expressiveness� The object�
oriented language Loop 	��
� on the other hand� has no
matching relation per se� but has similar expressivity�
achieved by circular subtype assertions � �� � where
� and � may share free type variable X
 this can be
viewed as a form of operator subtyping � �X� �� ��X��
The introduction of a matching relation is thus one� but
not the only� solution to the problem of typing inherited
binary methods�

In the next subsection we explore the mathematical
aspects of the matching relation�

����� Matching and Object Types

As described in 	�
� matching can consistently be de�
�ned in terms of pointwise subtyping on operators from
types to types� In this case an object type is used to
de�ne a function from types to types by replacing all oc�

currences of MyType by a type variable� For example�
Point � can be used to de�ne�

PointOperator � �P � Type� hh x � real
 y� real

equal �P � boolii

The original Point can be recovered by taking the �xed
point of the operator��

Point � Fix�PointOperator�

Details can be found in the paper cited above�
While understanding objects types as �xed points in

this way is intuitively appealing� the ability to unfold
recursive types does not interact well with the de�nition
of matching as essentially a relation on these operators
�rather than the �xed points themselves��

For example� look at the relationship between the
following types�

EPoint � OT hhx � real
 y � real

equal �EPoint � bool ii

Point � OT hhx � real
 y � real

equal �MyType � bool ii

ColorPoint � OT hhx � real
 y � real
 c� string

equal �MyType � bool ii

Understanding object types as recursive records� the
�rst two would seem to be the same type� How�
ever� while ColorPoint matches Point according to
our de�nition of matching� ColorPoint does not match
EPoint � Thus these two seemingly identical types must
be treated as being distinct� It is worth noting that
there is some justi�cation to treating the two types as
distinct� as the equal method of a class which generates
objects of type Point is type checked under weaker as�
sumptions on the parameter �i�e�� it has type MyType�
which is only assumed to match Point� than the cor�
responding method of EPoint � in which the parameter
has type EPoint �

This anomaly suggests that an encoding of object
types in terms of something a bit weaker than �xed
points might be necessary� It is an interesting open
problem to �nd such an encoding of object types �in�
cluding MyType� and a corresponding semantic de�ni�
tion of matching�

��� Multi�methods

A di�erent solution whereby binary methods can be em�
braced is to use multi�methods� Contrary to matching�
this solution does not introduce a new relation on types�
since with multi�methods one can have both type safety
and subtyping relations such as ColorPoint �� Point �

A multi�method is a collection of method bodies as�
sociated with one message name� The selection of which
method body to execute depends on the classes of one

�The notation Fix�F � means the least �xpoint of F �

To appear in THEORY AND PRACTICE OF OBJECT SYSTEMS ��

or more of the parameters of the method �rather than
just on the class of the receiver as in ordinary object�
oriented languages��

In this survey we distinguish two di�erent kinds
of multi�methods� the ones used by the language
CLOS 	��
� and the encapsulated multi�methods of 	���
��
� A uni�ed analysis of both kinds of multi�methods
is given in 	��
� We now describe each kind in turn�

����� Multi�methods �a la CLOS

Intuitively the idea is to consider �multi��methods �in
CLOS jargon� generic functions� as global functions
that are dynamically bound to di�erent method bod�
ies according to the classes of the actual arguments�
An object does not encapsulate its methods� just the
data �its instance variables�� There no longer exists the
notion of a privileged receiver for a method �the one
that encapsulates it� usually denoted by self or this�
since a multi�method is applied to several arguments
that equally participate in the selection of the body� In
this case we talk of �multiple dispatching� languages�
in antithesis to �single dispatching� ones where a priv�
ileged receiver is used� A class of objects is then char�
acterized just by the internal variables of its instances�
For example� in a typed multi�method�based language�
the classes given in Figures � and � would be de�ned as
in Figure ��

In order to stress the di�erence with the formalisms
presented so far we have used a di�erent syntax� Thus
a class declares only its subclassing relation and the in�
ternal representation of its instances �the includes key�
word�� while method de�nitions �introduced by the key�
word method� appear outside the class declarations�
In order to simplify the exposition in this section� we
identify classes and types� in the sense that the name of
a class �for which we no longer use the su�x Class� is
used as the type of its instances
 therefore in this sec�
tion �and in this section only� p � Point will also mean
�p is an instance of class Point �� Thus� when discussing
multi�methods �a la CLOS� we write class names where
types would otherwise appear�� This allows one to con�
sider multi�methods as overloaded functions� whose ac�
tual code is dynamically selected according to the type
�i�e�� the class� of the arguments they are applied to�

The de�nitions of the methods in Figure � are com�
pletely disconnected from those of classes� There are
two distinct de�nitions for equal � one for arguments
of types Point�Point and the other for arguments of
type ColorPoint�ColorPoint� We say that the message
equal denotes a multi�method �or a generic function�
or an overloaded function� formed by two branches �or

�If we were to distinguish between types and classes �i�e� be�
tween interfaces and implementations	 cf ������
 then a new nota�
tion would be needed to specify both a class and a type parameter
for multi�methods� One possibility is to use the notation of Cecil
���
 ���
 which does separate these concepts�

method bodies�� The type of a multi�method is the set
of the types of its branches
 thus equal has type�

fPoint � Point � bool �ColorPoint � ColorPoint � boolg

When equal is applied to a pair of arguments� the sys�
tem executes the branch de�ned for those parameters
whose type �best matches� the type of the arguments�
For example if equal is applied to two arguments in
which at least one of them is of type Point and the
other is a subtype of it� then the �rst de�nition of equal
is executed
 if both arguments have as type a subtype of
ColorPoint then the second de�nition is selected� More
generally� when a multi�method of type

fS� � T�� S� � T�� � � � � Sn � Tng

is applied to an argument of type S� the system ex�
ecutes the body de�ned for the parameter of type
Sj � mini����nfSi j S �� Sig� This selection is per�
formed at run�time� In this way one obtains dynamic
dispatch� Note that in this paradigm binary methods
are really binary� since the implicit argument given by
the receiver of the message is� in this case� explicit�

In 	��
 it is proved that to have a sound type sys�
tem it su�ces that every multi�method of type fS� �
T�� S� � T�� � � � � Sn � Tng satis�es the following
condition��

�i� j � 	���n
 if Si �� Sj then Ti �� Tj ���

�This is similar to the monotonicity condition of 	���
��
�� Note that all the multi�methods de�ned in Fig�
ure � �and in particular equal� satisfy this condition�
Therefore ColorPoint �� Point does not cause type in�
securities�

Intuitively� the idea underlying the multi�method ap�
proach is that binary methods may be applied to argu�
ments of di�erent types and that� in general� it is not
possible to choose the code to execute according to the
type of just one argument� To determine which method
body must be executed one needs to know the types of
all the arguments of the method� In single dispatching
the branch selection is based only on one argument�
the receiver
 therefore combining subtyping and binary
methods with heterogeneous arguments is not type�safe�
In contrast� using a multi�method we can re�ne the se�
lection by considering all the arguments� Thus it need
never happen that the argument of a method has a su�
pertype of the type of the corresponding parameter �as
in the case of breakit�� It is important to stress that
this constitutes an approach completely di�erent from
matching� where the arguments of a binary method are
statically forced to have the same type�

Note also that multi�methods allow one to specialize
equal in a di�erent way for each possible combination

�Some further conditions are required to assure that a best
matching branch always exists for the selection �see ���
 ����

and ������

�� To appear in THEORY AND PRACTICE OF OBJECT SYSTEMS

class Point
includes

xValue� real
yValue� real

end class

class ColorPoint subclass of Point
includes �� xValue and yValue are inherited

cValue � string
end class

method x �p� Point��real is return�p�xValue�

method y�p� Point��real is return�p�yValue�

method c�p� ColorPoint��real is return�p�cValue�

method equal �p�Point �q�Point��bool is return� �x �p���x �q�� �� �y�p���y�q�� �

method equal �p�ColorPoint � q�ColorPoint�� bool is return��c�p���c�q�� �� �x �p���x �q�� �� �y�p���y�q�� �

Figure �� Point and ColorPoint classes de�ned using multi�methods �a la CLOS�

of arguments� It su�ces to add the branches for the
remaining cases�

method equal�p� Point � q� ColorPoint�� bool is � � �

method equal�p� ColorPoint� q� Point �� bool is � � �

As we have seen� CLOS�s multi�methods induce an
object�oriented style of programming that is rather dif�
ferent from the one of traditional single dispatching
object�oriented languages� Most of the languages that
use multi�methods are untyped �e�g� CLOS 	��
� Dy�
lan 	�
� which use classes instead of types to drive the
selection of multi�methods�� The only strongly�typed
languages in our ken that use multi�methods are Ce�
cil 	��
� and Polyglot 	�
�

The lack of encapsulation in multi�methods is both
an advantage and a drawback� The drawback is
methodological� an object �or a class of objects� is no
longer associated with a �xed set of methods that have
privileged access to its internal representation� The
usual rule is that any method with a formal parame�
ter of a given class can access the instance variables
of the actual parameter object� The advantage is that
this solves the privileged access problem described in
Section ���� because a binary method can gain privi�
leged access to both its arguments� However� because
such methods can be de�ned anywhere in the program�
one cannot restrict direct access to instance variables
to a small area of the program text� One way to �x
such problems may be to add a separate module sys�
tem to control instance variable access 	��
� Instead of
pursuing that idea� in the next subsection� we show how
to apply the ideas of multi�methods in more traditional
object�oriented languages with single dispatching and
classes�

Conventional wisdom is that multiple dispatch is
more expensive than single dispatch� In a single dis�
patch language� a single table lookup can �nd the best
argument branch� With multiple dispatch� it may be
more expensive to compute the branch of a multi�
method that matches the arguments best� although var�
ious techniques have been designed to minimize the
added expense 	�� ��� ��
� However� in a language where
the compiler can tell which argument positions need
dispatching �as in CLOS�� one can implement multi�
method dispatch as a chain of single dispatches 	��
�
If this is done� then there is no extra cost for multi�
ple dispatch in programs that do not use it
 that is�
in a multiple�dispatching language� programs that only
use single dispatch have the same cost as in a single�
dispatching language� Moreover� if a program in a
single�dispatching language is written by using addi�
tional dispatching after methods are called to resolve
problems caused by binary methods �as in Section �����
then such a program will be no faster than the equiva�
lent multi�method program 	��
�

A �nal drawback of multi�methods �a la CLOS is
the di�culty of combining independently developed sys�
tems of multi�methods 	��
� While other ways to solve
this problem have been studied 	��
� the problem nearly
disappears when multi�methods are combined with sin�
gle dispatching� as described next�

����� Encapsulated multi�methods

To solve the encapsulation problems of multi�methods
�a la CLOS� we seek to emulate the Smalltalk model�
where every method is the method of one object� Thus
each method has a privileged receiver argument �self��

To appear in THEORY AND PRACTICE OF OBJECT SYSTEMS ��

which is the only argument whose internal state can
be accessed by the method� Instead of de�ning multi�
methods as global functions� the idea is to use them to
de�ne the bodies of some methods in a class de�nition
	��
� In this way a multi�method is always associated to
a message m of a class C � When m is sent to an object
of class C � it is dispatched to the corresponding method�
If this method happens to be a multi�method� then the
branch is selected according to the types of the further
arguments of m� Thus� the selection of the method is
still based on the receiver� but the actual code is selected
among several bodies that are encapsulated inside the
object� Inside these bodies� the receiver is still denoted
by the keyword self� Encapsulated multi�methods are
to be distinguished from static overloading �as found in
Ada� Haskell� C��� and other languages�� because the
selection of code must be made dynamically�

As an example of this technique� take the class Point
as in Figure � and rewrite the class ColorPoint as in
Figure �� In that Figure �note we are using our origi�
nal notation for classes again� there are two de�nitions
for equal � the �rst is executed when the argument of
equal is of type Point � the other when it is of type
ColorPoint� The selection of the appropriate de�nition
is done at run�time when the argument of equal has been
fully evaluated and hence its run�time type is apparent�
The selection is based on the type of the additional
argument� In other words� we have transformed the
method associated to equal into a multi�method� where
arguments of di�erent types are associated to di�erent
codes�

There are two di�erences from multi�methods �a la
CLOS� The �rst is that multi�methods are de�ned in
particular classes� whereas in CLOS they are globally
de�ned generic function names� This solves the encap�
sulation problems of CLOS multi�methods� because ac�
cess to instance variables is restricted to the methods
of a class� as only the receiver�s instance variables can
be accessed� The second di�erence is that dispatch is
not based on actual argument classes� but rather on ar�
gument types� This is possible because no privileged
access is obtained to the additional arguments� How�
ever since types are not equated with classes� the tech�
nique cannot solve the problem of privileged access to
other arguments discussed in Section ���� several dif�
ferent classes might implement the same type� so from
the type alone it is unclear which class implementation
the method should have access to�

The type of a multi�method is the set of the types
of its di�erent codes� Thus the type of an instance of
ColorPointClass now becomes

ColorPoint �
OT hhx � real
 y � real
 c� string

equal � fPoint � bool �ColorPoint � boolgii

and ColorPoint �� Point holds� since� for subtyping� or�
dinary methods are considered as multi�methods with
just one branch �their type is a singleton set� and in

a type system for multi�methods �see 	��
� one can de�
duce� fPoint � bool �ColorPoint � boolg �� fPoint �
boolg�

More precisely� the subtyping relation between sets
of types states that one set of types is smaller than
another if and only if for every type contained in the
latter there exists a type in the former smaller than
it� This �ts the intuition that one multi�method can
be replaced by another multi�method of di�erent type
when for every branch that can be selected in the former
there is one branch in the latter that can replace it�

Thus� if in writing a subclass one wants the type of
the instances to be a subtype of the type of the in�
stances of the superclass� then some care in overriding
binary methods is required� Indeed� the rule of thumb
for this approach is that to override a binary method
one must use an �encapsulated� multi�method with �at
least� two branches� one with a parameter whose type is
the type of the instances of the class being de�ned� the
other with a parameter whose type is the type of the
instances of the original superclass in which the mes�
sage associated with the binary method has been �rst
de�ned� Thus� when a binary method is overridden in
a new class� it is not enough to specify what the new
method has to do with the objects of the new class� It
is also necessary to specify what it has to do when the
argument is an object of a superclass� Fortunately� this
does not require a large amount of extra programming�
The number of branches that su�ce to override a binary
�or n�ary� method in a type�safe manner is independent
of both the size and the depth of the inheritance hier�
archy
 indeed� it is always equal to two� For example�
suppose that we further specialize our Point hierarchy
by adding further dimensions�

class �DPointClass subclass of PointClass
instance variables x�Value� real
methods � � �

class �DPointClass subclass of �DPointClass
instance variables x�Value� real
methods � � �

� � � and so on� up to a dimension n� The new classes
form a chain in the inheritance hierarchy� If we want
to override equal � what do we have to do in order for
this to be a chain of the subtyping hierarchy too �i�e��
nDPoint �� � � � �� �DPoint �� �DPoint �� Point ��
If we want to override equal in nDPointClass �thus we
want that in the description of nDPointClass a de��
nition of the form equal�p � nDPoint �is � � � appears��
then the �rst idea is to write for the class nDPointClass
a multi�method with n� � branches� one for each class
in the chain�� This is possible� but for type safety a

�Of course
 if in the de�nition of nDPointClass we do not
give any de�nition for equal then nDPointClass inherits the last
�multi��method de�ned for equal in the upper hierarchy� It is

�� To appear in THEORY AND PRACTICE OF OBJECT SYSTEMS

class ColorPointClass subclass of PointClass
instance variables �� xValue and yValue are inherited

cValue � string
methods

c�string is return�cValue�
equal �p� Point��bool is return� �xValue��p�x � �� �yValue��p�y� �
equal �p� ColorPoint��bool is return� �cValue��p�c� �� �xValue��p�x � �� �yValue��p�y� �

end class

Figure �� The class ColorPointClass written using encapsulated multi�methods�

multi�method with two branches is enough� one for ar�
guments of type nDPoint � which is the one we want
to de�ne� and the other for arguments of type Point �
which will handle all the arguments of a supertype of
nDPoint � For example� in case of n � � one could
de�ne	

class �DPointClass subclass of �DPointClass
instance variables x�Value� real
methods

x� �real is return�x�Value�
equal�p� Point��bool is return�p�equal�self� �
equal�p� �DPoint ��bool is

return��xValue��p�x � �� �yValue��p�y� ��
�x�Value��p�x� � �� �x�Value��p�x� � �

end class

Type safety stems from the fact that the subtyping con�
dition is satis�ed�

A �nal remark is in order� The di�erent branches
that compose a single multi�method are not required
to return the same type� For type safety it su�ces to
have the condition ��� as for multi�methods �a la CLOS�
for each pair of multi�method branches c�� c� with the
same name and number of arguments��� if the param�
eter types of c� are smaller than the corresponding pa�
rameter types of c�� then the result type of c� must be
smaller than the result type of c� 	��� ��
�

important to be clear that
 in the formalization we use
 a new
de�nition of a �multi��method completely overrides the old one
�i�e� it is not possible to inherit some branchesand override others	
this could by obtained by adding some extra syntax��

�This example is due to John Boyland�
�In general
 if we have a hierarchy of n classes whose in�

stances have type Sn �	 ��� �	 S� and we want to de�ne for
each of them a binary method
 respectively returning the type
Tn �	 ��� �	 T� then according to the subtyping rule for multi�
methodswe have the following type inequalities	 fSn � Tn� S� �
Tn��g �	 ��� �	 fSi	� � Ti	�� S� � Tig �	 fSi � Ti� S� �
Ti��g �	 ��� �	 fS� � T�g� This proves that two branches always
su�ce for binary methods� The declarations of the classes for
points are a special case of this
 where S� �Point
 for i � ����n�
Si�� �iDPoint
 and for i � ����n��� Ti �bool�
�
Indeed multi�methods may have more than one parameter

�this allows us to deal with n�ary methods�
 and the multi�
method branches are not all required to have the same number
of parameters�

Note that multi�methods can be considered as a kind
of typecase construct enhanced by two features� �a�
the selection of the case to apply uses subtyping in�
stead of type equality
 �b� all the cases are not required
to return the same type �they are solely required to sat�
isfy the condition ����� This makes multi�methods more
�exible than statically de�ned typecase statements as
might be found in imperative languages� without �a�� a
binary method whose parameter type is guarded us�
ing a typecase would always have to be rewritten
when new subclasses are added to the program
 with�
out �b�� specialization of the result type of binary meth�
ods could not be handled� The only remaining problem
that multi�methods and typecase share is that if the
method should only be de�ned with a parameter of ex�
actly the same type as the receiver� the multi�method
user will be required to add a new method body with
the original parameter type whose only purpose is to
raise an error message� See the conclusion for further
discussion of this issue�

Some further consistency conditions are required in
case of multiple inheritance 	��� ��� ��� ��
�

One of the main advantages of this approach is that
the extra branch required to assure type safety of sub�
typing can be generated in an automatic way� Therefore
this technique can be embedded directly in the technol�
ogy of the compiler� and used to �patch� the already
existing code of languages that use covariant specializa�
tion� like Ei�el and O�� Thus� like the solution given
in the next section� this solution can be directly ap�
plied to languages with covariant argument specializa�
tion without requiring any modi�cation of the code� a
recompilation of existing code will su�ce �see 	��
��

On the other hand this approach has some disadvan�
tages� One disadvantage compared to multi�methods �a
la CLOS is that it does not solve the problem of ob�
taining privileged access to other arguments in a binary
method� Another disadvantage of this approach is that
in case of multiple inheritance additional type checking
constraints are needed� The problem is that when mul�
tiple inheritance is used� the notion of a �best matching
branch� to select or to inherit may be lost� Conse�
quently� unconstrained use of multi�methods can break
the modularity of programming 	��
� since the addition

To appear in THEORY AND PRACTICE OF OBJECT SYSTEMS ��

of a new class to the system might require the addition
of some new code in a di�erent class to assure the exis�
tence of the best branch �see� for example� 	��
�� How�
ever the problem with modularity is less critical than in
the case of multi�method �a la CLOS� An additional dis�
advantage is again the performance penalty imposed by
multi�methods� One extra test and branch is required
to decide which code is to be executed� The overhead
to resolve uses of encapsulated multi�methods is how�
ever smaller than in the case of CLOS multi�methods
since there is no special lookup needed for the privileged
receiver�

There are also some less important disadvantages�
The �rst one is that� as it depends on an avant garde
type theory� the interactions of this theory with fairly
standard features like polymorphism �both implicit and
explicit� are not yet clear� �Models based on records
have been more deeply studied than those based on
overloading�� Also� even though there is not a blowup
of the number of extra method bodies that must be
written� there is at least a doubling of the number of
method bodies that must be written each time a binary
method is overridden� Some further negative remarks
are to be found at the end of the next section�

��� Simulating Multi�methods in a
Single�Dispatching Language

Ingalls o�ered a solution to what he called the problem
of �multiple polymorphism� at the �rst OOPSLA con�
ference 	��
� His solution to the binary method problem�
o�ered in the context of single�dispatching languages
such as Smalltalk��� 	��
� was to use two message dis�
patches� one to resolve the polymorphism of each argu�
ment�

In the example of points� colored points� and equal�
ity� the equal method would be coded as in Figure ��
As usual� the class ColorPointClass inherits the method
equalPoint from the class PointClass� Now the �mutu�
ally recursive� types of the instances of PointClass and
ColorPointClass are�

Point � OT hhx � real
 y � real

equal �Point � bool

equalPoint �Point � bool

equalColorPoint �ColorPoint � bool ii

ColorPoint � OT hhx � real
 y � real
 c� string

equal �Point � bool

equalPoint �Point � bool

equalColorPoint�ColorPoint � boolii

Notice that� with this typing� ColorPoint is a sub�
type of Point � Also� equal in ColorPoint is a binary
method� since by subsumption it can have argument
type ColorPoint as well� This typing can be said to
be more precise than the typing of ColorPoint given in
the introduction
 the general issue of the use of more
precise typings is taken up in Section ����

The solution o�ered by Ingalls is probably the best�
known way to simulate multiple dispatch in a lan�
guage with only single dispatch� With respect to true
multiple�dispatch� the Ingalls simulation is more exact
than the function simulation o�ered in Section ���� since
it can arrange for equal with two arguments whose dy�
namic type is ColorPoint to always take color into ac�
count� regardless of the static types of the argument
expressions� This is because of the second dynamic dis�
patch in the equal method� Such a result is not pos�
sible with the function simulation of Section ���� one
will always be able to apply the eqPoint function to
two ColorPoint objects and lose exact type informa�
tion� This example is thus one case for which dynamic
dispatch on binary methods occurs� In this respect� the
simulation of multiple�dispatch with external functions
is less faithful and �exible than the Ingalls simulation�

This translation can also be contrasted with encapsu�
lated multi�methods as described in Section ������ In�
galls� translation lacks modularity in that it requires
equalColorPoint to be added to the PointClass class
when ColorPointClass is de�ned� With multi�methods�
modularity can be preserved since the rede�nition of the
equal method inside ColorPointClass does not require
any modi�cation of the code for PointClass
 however�
this introduces an unnatural asymmetry� since the re�
de�nition of equal requires one to write code for how a
ColorPoint behaves when its equal method is passed a
Point � but not vice�versa� The natural symmetry can�
not be restored except by breaking the modularity of
the multi�method solution�

It should be pointed out that the above argument
only holds if we require �multi��methods to be writ�
ten in classes� as in Section ������ For multi�methods �a
la CLOS there is no problem of asymmetry� although
there is still a modularity problem� However� the multi�
method approach still requires one to go back and add
code for types that appeared to have been completed
earlier�

Ingalls� solution is surprisingly general�by overrid�
ing equalPoint in ColorPointClass� a di�erent method
can be executed for all four combinations of Point and
ColorPoint� Ingalls� solution could in fact be used
as one technique for implementing encapsulated multi�
methods in a compiler� provided the compiler had access
to all of the code at compilation time�

Finally� for large inheritance hierarchies the number
of cases required by Ingalls� solution can� in principle�
become quite cumbersome�

��� Precise Typings

It is sometimes advantageous to use more precise typ�
ings for methods� A binary method only needs its ar�
gument to have the methods that are explicitly used�
Generally this is a weaker requirement than having the
argument be an object of the current class� and it may
allow for a �larger� �with respect to the �� relation�

�� To appear in THEORY AND PRACTICE OF OBJECT SYSTEMS

class PointClass
� � �

methods

� � �

equal �p� Point�� bool is return� p�equalPoint�self� �
equalPoint�p� Point�� bool is return� �xValue��p�x� �� �yValue��p�y� �
equalColorPoint�p� ColorPoint�� bool is return� self�equalPoint�p� �

class ColorPointClass subclass of PointClass
� � �

methods

equal �p� Point�� bool is return� p�equalColorPoint�self� �
�� equalPoint is inherited

equalColorPoint�p� ColorPoint�� bool is return� �cValue��p�c� �� �xValue��p�x � �� �yValue��p�y� �

Figure �� Ingalls� simulation of multi�methods�

type of the argument of this method
 by the contravari�
ant subtyping rule for functions this produces a smaller
type for the method� The informal idea is thus to give
methods smaller types 	�� ��
� By subsumption� these
types can always be lifted to �true binary� form� allow�
ing objects of the same class to be passed as arguments
to the method� Thus� specifying a smaller type of a
method can only increase its usability�

Ingalls� solution in Section ��� in fact depends on the
use of precise types� for the key to its typability is the
use of Point for the type of the argument of equal in
ColorPointClass� This gives the method a smaller type
than if the argument were of type ColorPoint � In this
section we elaborate on this technique�

By way of illustration� consider the original
Point�ColorPoint example of Figures � and �� Since
neither equal method calls equal recursively� the types

Pointmin �
OT hhx � real
 y � real

equal �OT hhx � real
 y � realii � boolii

ColorPointmin �
OT hhx � real
 y � real
 c� string

equal �OT hhx � real
 y � real
 c� stringii � bool ii

may also be given� These types are subtypes of the
types given originally� Note that the objects passed to
equal themselves require no equal method be present�
Since Pointmin is a subtype of OT hhx � real
 y � realii
and similarly for ColorPointmin� it is easy to see that

Pointmin �� OT hhx � real
 y � real

equal �Pointmin � bool ii

ColorPointmin �� OT hhx � real
 y� real
 c� string

equal �ColorPointmin � boolii

so equal is indeed a binary method� and no typings are
lost in this approach� In fact� something is gained over
the matching interpretation described in Section ���� it

is possible to invoke the equal method of a Point �min

with a ColorPoint �min
 as argument� Typing this �het�
erogeneous� invocation is crucial for a class de�ning bi�
nary methods intended to be inherited without redef�
inition and able to take as arguments objects of any
subclass 	��
� In a type system based on matching� a
method declared to take arguments of typeMyType can�
not� in general� accept an object of a subclass as argu�
ment
 it is necessary to use bounded matching to real�
ize this �see the discussion at the end of Section �������
Precise types here provide a simpler solution based on
subtyping� Note that ColorPointmin does not match�
nor is it a subtype of� Pointmin�

As shown in Section ���� typing Ingalls� solution
when MyType appears only in the types of method pa�
rameters is possible simply by using subsumption� e�g��
to lift a ColorPoint to a Point in cp��equal�cp��� where
both cp� and cp� are objects of type ColorPoint� How�
ever this technique cannot be directly applied to bi�
nary methods with result of type MyType �or involving
MyType�� because subsumption on the type of the ar�
gument may cause loss of interesting type information�
Consider the example in Figure ��� which de�nes points
and colored points with a binary max method� Objects
of MPointClass and ColorMPointClass could be given
the following types� which are simple modi�cations of
the types of Points in Section ����

MPoint �
OT hhx � real
 y � real

max �MPoint �MPoint

maxMPoint �MPoint �MPoint

maxColorMPoint �ColorMPoint �MPoint ii

ColorMPoint �
OT hhx � real
 y � real
 c� string

max �MPoint �MPoint

maxMPoint �MPoint �MPoint

maxColorMPoint �ColorMPoint � ColorMPointii

To appear in THEORY AND PRACTICE OF OBJECT SYSTEMS ��

class MPointClass
� � �

methods

� � �

max �p� MPoint�� MPoint is return� p�maxMPoint�self� �
maxMPoint �p� MPoint�� MPoint is

if xValue ��� � yValue ��� � p�x���� p�y���
then return�p� else return�self�

maxColorMPoint�p� ColorMPoint�� MPoint is return� self�maxMPoint�p� �

class ColorMPointClass subclass of MPointClass
� � �

methods

max �p� MPoint�� MPoint is return� p�maxColorMPoint�self� �
�� maxMPoint is inherited

maxColorMPoint�p� ColorMPoint�� ColorMPoint is
if �xValue ��� � yValue ���� � brightness�cValue�

� �p�x���� p�y���� � brightness�p�c�
then return�p� else return�self�

Figure ��� Ingalls simulation of points with a max method� �rst attempt�

The subtyping ColorMPoint �� MPoint still holds�
but note that the result of method max of
ColorMPointClass is of type MPoint
 type check�
ing would fail if we assigned this method the type
MPoint � ColorMPoint � Thus the static type of tak�
ing themax of twoColorMPoints will have to be merely
MPoint �unless the method maxColorMPoint was used
explicitly�� True multi�methods do not su�er from this
shortcoming�

We can overcome this problem in a more expressive
type system that provides for polymorphism in addition
to recursive types� The idea is to make the type of max
more precise� and in this case� polymorphic� The code
for the max methods with their new type annotations
is given in Figure ��� This modi�cation yields types
for the objects of MPointClass and ColorMPointClass
described in Figure ��� If p is a MPoint � its max
method can still be specialized to a binary method�
p�max 	MPoint
 is of type MPoint �MPoint � and sim�
ilarly for the max method of a ColorMPoint � The re�
lation with the types of the �true binary� methods is
more direct in an implicitly typed language� where the
precise types are smaller 	��� ��
�

With this typing� taking the max of two elements of
ColorMPoint returns a ColorMPoint
 any other combi�
nation returns a MPoint � the best static type possible�
Note that ColorMPoint is still a subtype of MPoint in
a system with implicit unfolding of recursive types� So�
this typing has all the desired properties of the typing
via pure multi�methods of Section ���� giving more situ�
ations in which Ingalls� method may be usefully applied�

Soop and PolyTOIL are two languages in which all
of the precise typings of this section may be expressed�
Precise types are complex� however� and it is di�cult

to imagine programmers writing them routinely� A so�
lution to this problem is to automatically infer min�
imal types� See 	��
 for a type inference algorithm
for the I�Loop object�oriented language� The algo�
rithm infers a form of F�bounded polymorphic type for
classes and objects� It infers minimal types for the orig�
inal Point�ColorPoint example that are very similar to
the �small� types presented above� The types inferred
for objects of MPointClass and ColorMPointClass are
slightly more general than the form above�

To summarize some of the advantages and disadvan�
tages of precise typing�

� Precise types allow more �exibility in typing than
matching alone� They may be expressed using
bounded matching� but bounded matching requires
explicit quanti�cation and instantiation where sub�
typing alone may su�ce�

� Precise types are a critical component of a typed
version of Ingalls� solution�

� More precise types in module interfaces can be used
to overcome some of the limitations of matching�

� The generally more complicated form of the precise
types suggests that a type inference algorithmmay
be the only practical alternative�

� In de�ning a subclass� one may have to go back and
modify the type annotations of the superclass �and�
in general� the superclass of the superclass� etc�� in
order to generate subtypes� This may be seen as
another argument in favor of type inference� since
no modi�cations will be required in an implicitly
typed language�

�� To appear in THEORY AND PRACTICE OF OBJECT SYSTEMS

class MPointClass
� � �

max 	X �Type
�p�OT hhmaxMPoint �MPoint � X
 maxColorMPoint �ColorMPoint � X ii��X is

return� p�maxMPoint�self� �
� � �

class ColorMPointClass subclass of MPointClass
� � �

max 	X � Type
�p� OT hhmaxColorMPoint �ColorMPoint � X ii�� X is

return� p�maxColorMPoint�self� �
� � �

Figure ��� Ingalls simulation of points with a max method� precise typing�

MPoint �
OT hhx � real
 y � real

max �All�X � OT hh maxMPoint �MPoint � X
 maxColorMPoint �ColorMPoint � X ii � X

maxMPoint �MPoint �MPoint

maxColorMPoint �ColorMPoint �MPointii

ColorMPoint �
OT hhx � real
 y � real
 c� string

max �All�X � OT hhmaxColorMPoint �ColorMPoint � X ii � X

maxMPoint �MPoint �MPoint

maxColorMPoint �ColorMPoint � ColorMPointii

Figure ��� Types for object of MPointClass and ColorMPointClass

� Privileged Access to Object

Representations

In Section ���� we saw that the problems of typing bi�
nary methods are often accompanied by di�culties in
implementing binary operations without exposing ob�
ject internals to public view� This section sketches a
technique whereby such �overexposed objects� can be
wrapped in an additional layer of abstraction� creating a
limited scope in which their internal structure is visible�
The technique was developed by Pierce and Turner 	��

and by Katiyar� Luckham� and Mitchell 	��

 we refer
the reader to these papers for further details� In partic�
ular� 	��
 demonstrates that the mechanism shown here
is compatible with inheritance �though it requires some
additional machinery�� These ideas give a semantic ba�
sis for some aspects of the encapsulation via friends
found in C�� and the encapsulation in Cecil 	��
� Re�
turning to the example of integer set objects �and drop�
ping the union method� for brevity�� it is clear that the
typing

IntSet � OT hhadd � int � unit

member � int � bool

superSetOf � IntSet � boolii

does not provide a su�ciently rich protocol to allow the
superSetOf method to be implemented� there is no way

to �nd out what are the elements of the other set �the
one provided as argument to superSetOf �� We have no
choice but to extend the interface of set objects with a
method that provides access to this information
 let us
call it rep� as a reminder that� in general� it may need
to provide access to the whole internal representation
of the object�

IntSetExposed � hhadd � int � unit

member � int � bool

superSetOf � IntSetExposed � bool
rep� IntListii

Now we can easily implement all the methods of
IntSetExposedClass � as shown in Figure ���

It remains to show how to package the class
IntSetExposedClass so that the rep method can only be
called by other instances of the same class� For this� we
generalize Mitchell and Plotkin�s motto that �abstract
types have existential type� 	��
� combining it with the
idea of object interfaces as type operators from Cardelli
and Wegner�s partially abstract types 	��
�

The interface of the exposed integer set objects can
be written as follows�

IntSetExposedOperator �S � � hhadd � int � unit

member � int � bool

superSetOf � S � bool
rep� IntListii

To appear in THEORY AND PRACTICE OF OBJECT SYSTEMS ��

class IntSetExposedClass
instance variables

elts� IntList
methods

add �i� int�� unit is elts �� elts�cons�i�
member�i� int�� bool is return�elts�memq�i��
superSetOf �s� IntSet�� bool is

return�elts�superListOf �s�rep��
rep� IntList is return�elts�

end class

Figure ��� The class IntSetExposedClass � for which
writing superSetOf is straightforward

intSetPackage �
pack

procedure newIntSet�� is
var

nuSet� Fix�IntSetExposedOperator �
begin

nuSet �� new IntSetExposedClass��

return�nuSet�

end

as

Some�ISOp �� IntSetOperator�
OT hhnewIntSet � Fix�ISOp�ii

hiding

IntSetExposedOperator
end

Figure ��� The package intSetPackage�

Similarly� the interface of ordinary integer set objects
�without rep� can be written�

IntSetOperator�S � � hhadd � int � unit

member � int � bool

superSetOf � S � boolii

Now comes the key point� Instead of de�ning
IntSet � Fix�IntSetOperator� as we did before� we
build an abstract data type �ADT� and then open it
to obtain IntSet � The implementation of the ADT
uses IntSetExposedOperator � so that superSetOf makes
sense� but the rep method is hidden from public view�

The integer set package �or module� is de�ned in Fig�
ure ��� To verify that its type is

intSetPackage � Some�ISOp �� IntSetOperator�
OT hhnewIntSet � Fix�ISOp�ii

we need only check that when the hidden �witness
type� IntSetExposedOperator is replaced by the ab�
stract placeholder ISOp in the type of the body of the

package

OT hhnewIntSet � Fix�IntSetExposedOperator �ii

we obtain the body of the abstract type�

OT hhnewIntSet � Fix�ISOp�ii�

Having built intSetPackage� we can open it to ob�
tain the creation procedure newIntSet and the abstract
interface ISOp� from which we de�ne the type IntSet �

open intSetPackage

as ISOp with OT hhnewIntSetii

type IntSet � Fix�ISOp�

In the remainder of the program� objects created using
newIntSet have type IntSet � In particular� they can be
sent the superSetOf message�

In e�ect� what we have accomplished is to
blend object� and ADT�style abstraction mechanisms�
The primary mechanism is objects� both ordinary
�unary� operations like add and binary operations like
superSetOf are methods of objects rather than free�
standing procedures� The extra layer of packaging guar�
antees that elements of IntSet can only be created by
calling newIntSet�i�e�� that every element of IntSet is
actually an instance of IntSetExposedClass � and hence
supports the rep message�

� Summary and Conclusions

Binary methods pose real problems in object�oriented
programming languages� There is a typing problem be�
cause types with binary methods have few interesting
subtypes� and there is a problem obtaining privileged
access to additional arguments in binary methods�

We discussed the following solutions to the typing
problem for binary methods�

	 Avoiding binary�methods completely� We pro�
posed several techniques for achieving similar ef�
fects�

	 Using a notion of matching� which is weaker than
subtyping� This allows more polymorphism in the
presence of types with binary methods� However� it
seems to require programmers to plan ahead more
than they would using subtyping� and its �exibility
is not as great as with multi�methods�

	 Using multi�methods� either as a basis for object�
oriented programming� or as a solution within the
framework of single�dispatched languages� This
gives the programmer more �exibility in program�
ming binary methods� and consequently allows
more subtyping� However� there are modularity
and e�ciency problems with these approaches�

�� To appear in THEORY AND PRACTICE OF OBJECT SYSTEMS

	 Using more precise typings for methods �including
the Ingalls simulation of multi�methods�� This al�
lows more �exibility than matching� However� it
seems to require type inference to be practical 	��
�
and the resulting types may be more complicated
than programmers want to see�

To solve the problem of privileged access to addi�
tional arguments� we discussed adding additional layers
of abstraction� However� this by itself does not solve
the typing problems of binary methods
 it must be com�
bined with one of the previous solutions�

Matching� multi�methods� and precise typings o�er
three di�erent solutions to the binary methods problem�
Matching insists that binary methods have the type of
both arguments �the receiver and the extra argument�
exactly the same� and statically enforces this property�
Multi�methods allow all heterogeneous invocations of
binary methods� so for instance the equal method of a
ColorPoint may be passed a Point as argument� Precise
typings lie somewhere between the two� they do not
insist that binary methods have the same type for both
arguments� but also do not allow all safe heterogenous
invocations of binary methods�

To illustrate a weakness of multi�methods� con�
sider the binary methods of DoubleLinkClass in Fig�
ure �� Using multi�methods� there is a problem if the
setNext method of DoubleLink is invoked with a Link
node as argument� the Link should point back to the
DoubleLink � but it cannot� The best solution is to de�
�ne a multi�method case here to �ag a run�time error�
In the case of matching� the receiver and argument must
be the same type and the type system safely precludes
such a message send� Precise typings produce a solution
between the two� a Link may point to a DoubleLink �
but a DoubleLink may not point to a Link � The latter
restriction� imposed by the type system� prevents the
above run�time error from arising�

To illustrate a lack of expressiveness of match�
ing� consider a graphical user interface in which an
AlertWindowClass has been de�ned by inheritance from
WindowClass� A binary method overlap should be able
to compare plain windows with alert windows� Note
also that the overlap method should be specialized in
AlertWindowClass in order to take into account some
priority of the alerts �thus overlap is a binary method��
This could be programmedwith multi�methods and pre�
cise typings� but not with matching�

A weakness of precise typings is illustrated by the
need to use Ingalls� solution to simulate multiple dis�
patch� This solution is an ad hoc implementation
of multiple dispatch� All three solutions thus have
strengths and weaknesses� This suggests that the in�
tegration of di�erent solutions into a single object�
oriented language is a task worthy of study�

So� which solution is the best� None of the solutions
discussed above are perfect� Some work also remains
in determining if some of the solutions will scale up to

full�featured languages� For practical programming lan�
guages the bottom line may be the empirical question
of what sort of inconvenience the programmer is most
likely to tolerate� It is our hope that further research
will uncover better solutions� perhaps using some com�
bination of the techniques discussed in this paper�

Acknowledgements

Thanks to the US National Science Foundation and ES�
PRIT for their support of the workshop that resulted
in this paper� Thanks to the anonymous referees for
comments that helped improve this paper�

References

	�
 Mart !n Abadi and Luca Cardelli� On subtyping
and matching� In Proceedings ECOOP ���� pages
���"���� LNCS ���� Springer�Verlag� �����

	�
 Rakesh Agrawal� Lindga G� DeMichiel� and
Bruce G� Lindsay� Static type checking of multi�
methods� ACM SIGPLAN Notices� ����������"
���� November ����� OOPSLA ��� Conference
Proceedings� Andreas Paepcke �editor�� October
����� Phoenix� Arizona�

	�
 Roberto M� Amadio and Luca Cardelli� Subtyp�
ing recursive types� ACM Transactions on Pro�
gramming Languages and Systems� ������ Septem�
ber �����

	�
 Pierre America� Inheritance and subtyping in
a parallel object�oriented language� In Jean
Bezivin et al�� editors� ECOOP �	
� European Con�
ference on Object�Oriented Programming� Paris�
France� pages ���"���� New York� NY� June �����
Springer�Verlag� Lecture Notes in Computer Sci�
ence� Volume ����

	�
 Pierre America� Designing an object�oriented pro�
gramming language with behavioural subtyping� In
J� W� de Bakker� W� P� de Roever� and G� Rozen�
berg� editors� Foundations of Object�Oriented Lan�
guages� REX School�Workshop� Noordwijkerhout�
The Netherlands� May�June ���
� volume ��� of
Lecture Notes in Computer Science� pages ��"���
Springer�Verlag� New York� NY� �����

	�
 Eric Amiel� Oliver Gruber� and Eric Simon� Op�
timizing multi�method dispatch using compressed
dispatch tables� In OOPSLA ��� Conference
Proceedings� volume ������ of SIGPLAN Notices�
pages ���"���� ACM� October �����

	�
 Apple Computer Inc�� Eastern Research and Tech�
nology� Dylan� an object�oriented dynamic lan�
guage� April �����

To appear in THEORY AND PRACTICE OF OBJECT SYSTEMS ��

	�
 Fran#cois Bancilhon� Claude De�
lobel� and Paris Kanellakis �eds��� Implementing
an Object�Oriented database system� The story of
O�� Morgan Kaufmann� �����

	�
 Andrew Black� Norman Hutchinson� Eric Jul� and
Henry Levy� Object structure in the Emerald
system� ACM SIGPLAN Notices� ���������"���
November ����� OOPSLA ��� Conference Proceed�
ings� NormanMeyrowitz �editor�� September �����
Portland� Oregon�

	��
 Andrew P� Black and Norman Hutchinson� Type�
checking polymorphism in Emerald� Technical Re�
port CRL ���� �Revised�� Digital Equipment Cor�
poration� Cambridge Research Lab� Cambridge�
Mass�� July �����

	��
 John Boyland and Giuseppe Castagna� Type�safe
compiling of covariant specialization� a practical
case� Technical Report CSD�������� University of
California� Berkeley� November ����� Currently
available by anonymous ftp from ftp�ens�fr in �le
�pub�dmi�users�castagna�o��ps�Z�

	��
 Kim B� Bruce� A paradigmatic object�oriented
programming language� design� static typing and
semantics� Journal of Functional Programming�
��������"���� �����

	��
 Kim B� Bruce� Angela Schuett� and Robert van
Gent� PolyTOIL� A type�safe polymorphic object�
oriented language� In Proceedings ECOOP ����
pages ��"��� LNCS ���� Springer�Verlag� ����� A
complete version of this paper with full proofs is
available via http���www�cs�williams�edu�
kim��

	��
 Peter Canning� William Cook� Walter Hill� Walter
Oltho�� and John Mitchell� F�bounded quanti�ca�
tion for object�oriented programming� In Fourth
International Conference on Functional Program�
ming Languages and Computer Architecture� pages
���"���� September �����

	��
 Luca Cardelli� A semantics of multiple inheritance�
In G� Kahn� D� MacQueen� and G� Plotkin� editors�
Semantics of Data Types� volume ��� of Lecture
Notes in Computer Science� pages ��"��� Springer�
Verlag� ����� Full version in Information and Com�
putation �����������"���� �����

	��
 Luca Cardelli and Peter Wegner� On under�
standing types� data abstraction� and polymor�
phism� Computing Surveys� ���������"���� Decem�
ber �����

	��
 Giuseppe Castagna� Covariance and contravari�
ance� con�ict without a cause� ACM Transac�
tions on Programming Languages and Systems�
���������"���� �����

	��
 Giuseppe Castagna� Giorgio Ghelli� and Giuseppe
Longo� A calculus for overloaded functions
with subtyping� Information and Computation�
����������"���� February ����� A preliminary
version appeared in ACM Conference on LISP
and Functional Programming � June ���� �pp� ���"
�����

	��
 Giuseppe Castagna and Gary T� Leavens� Founda�
tions of object�oriented languages� �nd workshop
report� SIGPLAN Notices� �������"��� February
�����

	��
 Craig Chambers� Object�oriented multi�methods
in Cecil� In Ole LehrmannMadsen� editor� ECOOP
���� European Conference on Object�Oriented Pro�
gramming� Utrecht� The Netherlands� volume ���
of Lecture Notes in Computer Science� pages ��"
��� Springer�Verlag� New York� NY� �����

	��
 Craig Chambers� multi�method implementation
question� personal communication via e�mail� Au�
gust and November �����

	��
 Craig Chambers and Gary T� Leavens� Typecheck�
ing and modules for multi�methods� ACM SIG�
PLAN Notices� ��������"��� October ����� OOP�
SLA ��� Conference Proceedings� October �����
Portland� Oregon�

	��
 Weimin Chen� Volker Turau� and Wolfgang Klas�
E�cient dynamic look�up strategy for multi�
methods� In Mario Tokoro and Remo Pareschi� edi�
tors� ECOOP ���� European Conference on Object�
Oriented Programming� Bologna� Italy� volume ���
of Lecture Notes in Computer Science� pages ���"
���� New York� NY� July ����� Springer�Verlag�

	��
 William R� Cook� Object�oriented program�
ming versus abstract data types� In J� W�
de Bakker� W� P� de Roever� and G� Rozen�
berg� editors� Foundations of Object�Oriented Lan�
guages� REX School�Workshop� Noordwijkerhout�
The Netherlands� May�June ���
� volume ��� of
Lecture Notes in Computer Science� pages ���"����
Springer�Verlag� New York� NY� �����

	��
 WilliamR� Cook� Walter L� Hill� and Peter S� Can�
ning� Inheritance is not subtyping� In Proc� �
th
ACM Symp� on Principles of Programming Lan�
guages� pages ���"���� January �����

	��
 Je�rey Dean� David Grove� and Craig Cham�
bers� E�cient dynamic look�up strategy for multi�
methods� In Walter Oltho�� editor� ECOOP ����
European Conference on Object�Oriented Program�
ming� Aarhus� Denmark� volume ��� of Lecture
Notes in Computer Science� pages ��"���� New
York� NY� August ����� Springer�Verlag�

�� To appear in THEORY AND PRACTICE OF OBJECT SYSTEMS

	��
 L�G� DeMichiel and R�P� Gabriel� Common Lisp
Object System overview� In B ezivin� Hullot�
Cointe� and Lieberman� editors� Proc� of ECOOP
�	
 European Conference on Object�Oriented Pro�
gramming� number ��� in LNCS� pages ���"����
Paris� France� June ����� Springer�Verlag�

	��
 J� Eifrig� S� Smith� and V� Trifonov� Sound poly�
morphic type inference for objects� In Proceedings
of OOPSLA ���� pages ���"���� �����

	��
 J� Eifrig� S� Smith� V� Trifonov� and A� Zwarico�
Application of OOP type theory� State� decidabil�
ity� integration� In Proceedings of OOPSLA ����
pages ��"��� �����

	��
 Jonathan Eifrig� Scott Smith� and Valery Tri�
fonov� Type inference for recursively constrained
types and its application to OOP� In Math�
ematical Foundations of Programming Seman�
tics� New Orleans� volume � of Electronic Notes
in Theoretical Computer Science� Elsevier� �����
http���www�elsevier�nl����mcs�tcs�pc�volume���htm�

	��
 Giorgio Ghelli� A static type system for message
passing� In OOPSLA ��� Conference Proceedings�
pages ���"���� �����

	��
 Adele Goldberg and David Robson� Smalltalk�	
�
The Language and Its Implementation� Addison�
Wesley� Reading� MA� �����

	��
 Martin Hofmann and Benjamin Pierce� A unify�
ing type�theoretic framework for objects� Journal
of Functional Programming� ����� Previous ver�
sions appeared in the Symposium on Theoretical
Aspects of Computer Science� ����� �pages ���"
���� and� under the title �An Abstract View of
Objects and Subtyping �Preliminary Report��� as
University of Edinburgh� LFCS technical report
ECS�LFCS�������� �����

	��
 Daniel H� H� Ingalls� A simple technique for han�
dling multiple polymorphism� In Norman Mey�
rowitz� editor� OOPSLA �	� Conference Proceed�
ings� Portland� Oregon� September ��	�� volume
������ of ACM SIGPLAN Notices� pages ���"����
ACM� November �����

	��
 Dinesh Katiyar� David Luckham� and John
Mitchell� A type system for prototyping languages�
In Conference Record of POPL ���� ��st ACM
SIGPLAN�SIGACT Symposium of Principles of
Programming Languages� Portland� Oregon� pages
���"���� ACM� January �����

	��
 Gregor Kiczales and Luis H� Rodriguez Jr� E�cient
method dispatch in PCL� In Andreas Paepcke�
editor� Object�Oriented Programming� the CLOS
Perspective� chapter ��� pages ���"����MIT Press�
Cambridge� Mass�� �����

	��
 Gary T� Leavens� Modular speci�cation and ver�
i�cation of object�oriented programs� IEEE Soft�
ware� �������"��� July �����

	��
 Gary T� Leavens and William E� Weihl� Reason�
ing about object�oriented programs that use sub�
types �extended abstract�� In N� Meyrowitz� editor�
OOPSLA ECOOP ��
 Proceedings� volume ������
of ACM SIGPLAN Notices� pages ���"���� ACM�
October �����

	��
 Gary T� Leavens and William E� Weihl� Speci�ca�
tion and veri�cation of object�oriented programs
using supertype abstraction� Acta Informatica�
����� To appear� An expanded version is Depart�
ment of Computer Science� Iowa State University�
Technical Report �����d� August �����

	��
 Barbara Liskov� Dorothy Curtis� Mark Day� Sanjay
Ghemawat� Robert Gruber� Paul Johnson� and An�
drew C� Myers� Theta reference manual� Technical
Report Programming Methodology Group Memo
��� MIT� February �����

	��
 Barbara Liskov and Jeannette Wing� A behav�
ioral notion of subtyping� ACM Transactions on
Programming Languages and Systems� ����������"
����� November �����

	��
 Narciso Mart !�Oliet and Jos e Meseguer� Inclusions
and subtypes� Technical Report SRI�CSL�������
Computer Science Laboratory� SRI International�
December �����

	��
 Bertrand Meyer� Ei�el� the language� Prentice�
Hall� �����

	��
 John Mitchell and Gordon Plotkin� Abstract types
have existential type� ACM Transactions on Pro�
gramming Languages and Systems� ������ July
�����

	��
 W� B� Mugridge� J� G� Hosking� and J� Hamer�
Multi�methods in a statically�typed programming
language� In Pierre America� editor� ECOOP ���
Conference Proceedings� Geneva� Switzerland� vol�
ume ��� of Lecture Notes in Computer Science�
Springer�Verlag� �����

	��
 Greg Nelson� editor� Systems Programming with
Modula��� Prentice Hall� �����

	��
 Benjamin C� Pierce and David N� Turner� Stat�
ically typed friendly functions via partially ab�
stract types� Technical Report ECS�LFCS����
���� University of Edinburgh� LFCS� April �����
Also available as INRIA�Rocquencourt Rapport de
Recherche No� �����

	��
 Benjamin C� Pierce and David N� Turner� Sim�
ple type�theoretic foundations for object�oriented

To appear in THEORY AND PRACTICE OF OBJECT SYSTEMS ��

programming� Journal of Functional Program�
ming� ��������"���� April ����� A preliminary
version appeared in Principles of Programming
Languages� ����� and as University of Edinburgh
technical report ECS�LFCS�������� under the ti�
tle �Object�Oriented Programming Without Re�
cursive Types��

	��
 John Reynolds� Three approaches to type struc�
ture� In Mathematical Foundations of Software De�
velopment� Springer�Verlag� ����� Lecture Notes in
Computer Science No� ����

	��
 N� Rodriguez� R� Ierusalimschy� and J� L� Rangel�
Types in school� SIGPLAN Notices� ������ �����

	��
 Craig Scha�ert� Topher Cooper� Bruce Bullis� Mike
Kilian� and Carrie Wilpolt� An introduction to
Trellis�Owl� In Norman Meyrowitz� editor� OOP�
SLA �	� Conference Proceedings� Portland� Ore�
gon� September ��	�� volume ������ of ACM SIG�
PLAN Notices� pages �"��� ACM� November �����

	��
 Bjarne Stroustrup� The C�� Programming Lan�
guage� Addison�Wesley� Reading� Mass� �����

	��
 Larry Tesler� Object Pascal report� Technical Re�
port �� Apple Computer� �����

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

